化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4921-4930.doi: 10.11949/0438-1157.20210041

• 能源和环境工程 • 上一篇    下一篇

低阶煤原位制备ZnO基活性炭脱硫剂

演康1,3(),杨颂1,3,刘守军1,2,3(),杨超2,樊惠玲2,3,上官炬2,3   

  1. 1.太原理工大学化学化工学院,山西 太原 030024
    2.太原理工大学,煤科学与技术教育部和山西省重点实验室,山西 太原 030024
    3.山西省民用洁净燃料工程研究中心,山西 太原 030024
  • 收稿日期:2021-01-08 修回日期:2021-04-23 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 刘守军 E-mail:1310333755@qq.com;13303460889@163.com
  • 作者简介:演康(1995—),男,硕士研究生,1310333755@qq.com
  • 基金资助:
    国家自然科学基金项目(22078223);山西省高等学校科技创新项目(2019L0313);山西省专利推广实施资助计划(20200719)

In-situ preparation of ZnO-based activated carbon desulfurizer from low-rank coal

Kang YAN1,3(),Song YANG1,3,Shoujun LIU1,2,3(),Chao YANG2,Huiling FAN2,3,Ju SHANGGUAN2,3   

  1. 1.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    3.Shanxi Engineering Center of Civil Clean Fuel, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2021-01-08 Revised:2021-04-23 Published:2021-09-05 Online:2021-09-05
  • Contact: Shoujun LIU E-mail:1310333755@qq.com;13303460889@163.com

摘要:

将金属氧化物活性组分通过浸渍负载的方式分散到多孔载体上,是制备高活性金属氧化物脱硫剂的常用方法。然而,由于活性组分的负载易使载体孔隙率下降,导致活性组分的脱硫能力不能充分发挥。本文直接以廉价的低阶煤为原料,经过预处理后在煤中加入硝酸锌,通过物理-化学活化法一步制备ZnO基活性炭常温脱硫剂,即将活性炭的制备与活性组分的负载一步完成。研究了硝酸锌加入量、活化温度和活化时间对脱硫剂脱硫性能的影响。结果表明:当硝酸锌加入量为20%(质量),活化温度为850℃,活化时间为1 h时,脱硫剂的穿透时间为210 min,其对应的穿透硫容为71.4 mg/g,其脱硫性能是同等实验条件下商业活性炭负载ZnO脱硫剂的5.3倍,较高的脱硫性能主要归因于其发达的介孔孔隙,不仅有利于传质,而且有利于硫化产物的存储。

关键词: 原位制备, 活性炭, 脱硫剂, 吸附, H2S

Abstract:

Dispersing the metal oxide active component on the porous carrier by impregnation and loading is a common method for preparing highly active metal oxide desulfurizers. However, due to the decrease of porosity of the carrier due to the loading of active components, the desulfurization capacity of active components cannot be fully utilized. In this study, cheap low-rank coal was directly used as raw material. After pretreatment, zinc nitrate was added into the coal to prepare ZnO based activated carbon desulfurizer at room temperature in one step through physical-chemical activation method. The preparation of activated carbon and the loading of active components were completed in one step. The effects of zinc nitrate immersion amount, activation temperature and activation time on desulfurization performance of desulfurizer were studied. The results showed that when the immersion amount was 20%(mass), the activation temperature was 850℃, and the activation time was 1 h, the breakthrough time of desulfurizer was 210 min, and its sulfur capacity was 71.4 mg/g. Its desulfurization performance was 5.3 times that of commercial activated carbon supported ZnO desulfurizer under the same experimental conditions. The high desulfurization performance is mainly attributed to its developed mesoporous pores, which is not only conducive to mass transfer, but also beneficial to the storage of sulfide products.

Key words: in-situ preparation, activated carbon, desulfurizer, adsorption, hydrogen sulfide

中图分类号: 

  • O 643.3

表1

WM的工业分析及元素分析"

工业分析/%元素分析/%
VadMadAadFCadCadHadOadNadSad
31.5722.167.2439.0347.544.6116.970.610.87

图1

样品制备示意图"

图2

脱硫实验流程图"

图3

不同硝酸锌加入量所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图4

不同活化温度所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图5

不同活化时间所制备脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图6

商业活性炭负载ZnO脱硫剂和原位制备ZnO活性炭脱硫剂的穿透曲线(a)和对应的穿透硫容(b)"

图7

AC-20和WM-850-1-20的XRD谱图"

图8

AC-20和WM-850-1-20的N2吸脱附等温线(a)及孔径分布(b)"

表2

AC-20和WM-850-1-20的织构性质"

样品比表面积/(m2/g)总孔/(cm3/g)微孔/(cm3/g)介孔/(cm3/g)介孔/总孔
AC-209130.470.370.100.21
WM-850-1-203550.250.080.170.68

图9

AC-20 (a)和WM-850-1-20 (b) 的扫描电镜图和对应的Zn元素分布图"

图10

ACE-20 (a)和WME-850-1-20 (b)的S 2p XPS谱图"

图11

ACE-20和WME-850-1-20的N2吸脱附等温线(a)及孔径分布(b)"

表3

ACE-20和WME-850-1-20的织构性质"

样品比表面积/(m2/g)总孔/(cm3/g)微孔/(cm3/g)介孔/(cm3/g)介孔/总孔
ACE-208540.440.350.090.20
WME-850-1-203020.200.050.150.75

图12

原位ZnO基活性炭脱硫剂的制备和吸附机理"

1 Rasi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation—a review[J]. Energy Conversion and Management, 2011, 52(12): 3369-3375.
2 Rosso I, Galletti C, Bizzi M, et al. Zinc oxide sorbents for the removal of hydrogen sulfide from syngas[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1688-1697.
3 Li L, Sun T H, Shu C H, et al. Low temperature H2S removal with 3-D structural mesoporous molecular sieves supported ZnO from gas stream[J]. Journal of Hazardous Materials, 2016, 311: 142-150.
4 Yang C, Wang J, Fan H L, et al. Contributions of tailored oxygen vacancies in ZnO/Al2O3 composites to the enhanced ability for H2S removal at room temperature[J]. Fuel, 2018, 215: 695-703.
5 Yang C, Wang J, Fan H L, et al. Activated carbon-assisted fabrication of cost-efficient ZnO/SiO2 desulfurizer with characteristic of high loadings and high dispersion[J]. Energy & Fuels, 2018, 32(5): 6064-6072.
6 耿强. 熔渗法制备氧化锌基脱硫剂及其常温脱硫性能研究[D]. 太原: 太原理工大学, 2019.
Geng Q. Study on preparation of zinc oxide-based desulfurizer by infiltration method and its desulfurization performance at room temperature[D]. Taiyuan: Taiyuan University of Technology, 2019.
7 胡佩雷, 徐华龙, 沈伟. 改性Zr-Na/zeolite双功能沸石脱除水溶液中氨氮和磷性能[J]. 精细化工, 2018, 35(9): 1601-1608.
Hu P L, Xu H L, Shen W. Removal of ammonium and phosphate from aqueous solution by dual-functional Zr-Na modified zeolite[J]. Fine Chemicals, 2018, 35(9): 1601-1608.
8 李灿, 马福秋, 葛春元, 等. 改性介孔二氧化硅对硫化氢的吸附研究[J]. 中国环保产业, 2018(7): 39-42.
Li C, Ma F Q, Ge C Y, et al. Study on adsorption of sulfureted hydrogen by metallic oxide modification and meso-porous silicon dioxide[J]. China Environmental Protection Industry, 2018(7): 39-42.
9 王爱民, 白妮, 张国涛, 等. 污泥-兰炭末基成型活性炭的制备及吸附性能研究[J]. 精细化工, 2017, 34(2): 207-213.
Wang A M, Bai N, Zhang G T, et al. Study on preparation of pressed active carbon based on sewage sludge and fine semi-coke and properties of adsorption[J]. Fine Chemicals, 2017, 34(2): 207-213.
10 Nguyen-Thanh D, Bandosz T J. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon, 2005, 43(2): 359-367.
11 Sun F G, Liu J, Chen H C, et al. Nitrogen-rich mesoporous carbons: highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S[J]. ACS Catalysis, 2013, 3(5): 862-870.
12 Bagreev A, Angel Menendez J, Dukhno I, et al. Bituminous coal-based activated carbons modified with nitrogen as adsorbents of hydrogen sulfide[J]. Carbon, 2004, 42(3): 469-476.
13 Li Y M, Liu X. Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor[J]. Materials Chemistry and Physics, 2014, 148(1/2): 380-386.
14 宋华, 王璐, 张娇静, 等. 氧化铁改性活性炭的制备及其吸附脱硫性能[J]. 化工进展, 2013, 32(3): 639-644, 651.
Song H, Wang L, Zhang J J, et al. Adsorption of H2S by iron oxide modified activate carbon[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 639-644, 651.
15 李芬, 张彦平, 杨莹, 等. 活性炭负载纳米ZnO的结构及常温脱除H2S的性能[J]. 硅酸盐学报, 2012, 40(6): 800-805.
Li F, Zhang Y P, Yang Y, et al. Structure of activated carbon supported with nano-ZnO and its removal performance of H2S at room temperature[J]. Journal of the Chinese Ceramic Society, 2012, 40(6): 800-805.
16 Boutillara Y, Tombeur J L, De Weireld G, et al. In-situ copper impregnation by chemical activation with CuCl2 and its application to SO2 and H2S capture by activated carbons[J]. Chemical Engineering Journal, 2019, 372: 631-637.
17 申烨华, 李文超, 陈邦, 等. 氧化锌法制备活性炭: 106115699A[P]. 2016-11-16.
Shen Y H, Li W C, Chen B, et al. Zinc oxide method for preparing activated carbon: 106115699A[P]. 2016-11-16.
18 黄文辉, 杨起, 唐修义, 等. 中国炼焦煤资源分布特点与深部资源潜力分析[J]. 中国煤炭地质, 2010, 22(5): 1-6.
Huang W H, Yang Q, Tang X Y, et al. Distribution features of coal for coking resource in China and deep part potential analysis[J]. Coal Geology of China, 2010, 22(5): 1-6.
19 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222.
Xing B L, Huang G X, Chen L J, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222.
20 王秀芳, 田勇, 张会平. 高比表面积煤质活性炭的制备与活化机理[J]. 化工学报, 2009, 60(3): 733-737.
Wang X F, Tian Y, Zhang H P. Preparation and activation mechanism of high specific surface area coal-based activated carbon[J]. CIESC Journal, 2009, 60(3): 733-737.
21 Yang C, Yang S, Fan H L, et al. Tuning the ZnO-activated carbon interaction through nitrogen modification for enhancing the H2S removal capacity[J]. Journal of Colloid and Interface Science, 2019, 555: 548-557.
22 解强, 姚鑫, 杨川, 等. 压块工艺条件下煤种对活性炭孔结构发育的影响[J]. 煤炭学报, 2015, 40(1): 196-202.
Xie Q, Yao X, Yang C, et al. Effect of coalification degree of coals on the porosity of coal-based granular activated carbon prepared by briquetting method[J]. Journal of China Coal Society, 2015, 40(1):196-202.
23 易牡丹, 丘克强. 由酚醛树脂基板CO2活化法制备高性能活性炭[J]. 应用化工, 2012, 41(7): 1127-1131.
Yi M D, Qiu K Q. Preparation of high-properties activated carbon from phenolic resin laminated board with CO2 activation[J]. Applied Chemical Industry, 2012, 41(7): 1127-1131.
24 Shi R H, Zhang Z R, Fan H L, et al. Cu-based metal-organic framework/activated carbon composites for sulfur compounds removal[J]. Applied Surface Science, 2017, 394: 394-402.
25 邵纯红, 孙曙光, 张爽, 等. 纳米CuO/ZnO去除H2S反应条件及机理研究[J]. 化学工程师, 2010, 24(2): 13-15.
Shao C H, Sun S G, Zhang S, et al. Reaction condition and mechanism research with nano CuO/ZnO to remove H2S[J]. Chemical Engineer, 2010, 24(2): 13-15.
26 Zhang R P, Wang Y, Jia M Q, et al. One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries[J]. Applied Surface Science, 2018, 437: 375-383.
27 Hao X Q, Wang Y C, Zhou J, et al. Zinc vacancy-promoted photocatalytic activity and photostability of ZnS for efficient visible-light-driven hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 221: 302-311.
28 Yang C, Wang Y S, Fan H L, et al. Bifunctional ZnO-MgO/activated carbon adsorbents boost H2S room temperature adsorption and catalytic oxidation[J]. Applied Catalysis B: Environmental, 2020, 266: 118674.
29 Brazhnyk D V, Zaitsev Y P, Bacherikova I V, et al. Oxidation of H2S on activated carbon KAU and influence of the surface state[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 557-566.
30 谭小耀, 吴迪镛, 袁权. 浸渍活性炭脱硫过程中孔结构及气体湿度的影响[J]. 化工学报, 1997, 48(2): 237-240.
Tan X Y, Wu D Y, Yuan Q. Influence of the pore structure and gas humidity on desulfurization by impregnated activated carbon[J]. Journal of Chemical Industry and Engineering (China), 1997, 48(2): 237-240.
31 李芬. 纳米锌基脱硫剂室温脱硫效能及再生研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.
Li F. Study on desulfurization performance at ambient temperature and regeneration of nanocrystalline zinc-base sorbent[D]. Harbin: Harbin Institute of Technology, 2007.
32 Wang L J, Fan H L, Shangguan J, et al. Design of a sorbent to enhance reactive adsorption of hydrogen sulfide[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21167-21177.
[1] 黄陆月, 刘畅, 许勇毅, 邢浩若, 王峰, 马双忱. CDI二维浓度传质模型的建立以及实验验证[J]. 化工学报, 2022, 73(7): 2933-2943.
[2] 朱江伟, 马鹏飞, 杜晓, 杨言言, 郝晓刚, 罗善霞. 基于可变价NiFe-LDH/rGO对磷酸根离子的特异性电控分离[J]. 化工学报, 2022, 73(7): 3057-3067.
[3] 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181.
[4] 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239.
[5] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[6] 张浩, 赵宇, 徐志明, 李晋辉. 羧甲基葡聚糖的快速沉降法阻垢特性研究[J]. 化工学报, 2022, 73(4): 1515-1522.
[7] 刘碧强, 曹海山. 基于流量校准的吸附测量方法及误差分析[J]. 化工学报, 2022, 73(4): 1597-1605.
[8] 王刚, 车小平, 汪仕勇, 邱介山. 水溶性带电聚合物黏结剂修饰炭电极用于增强电容去离子性能[J]. 化工学报, 2022, 73(4): 1763-1771.
[9] 王毅, 熊启钊, 陈杨, 杨江峰, 李立博, 李晋平. 锆基金属有机骨架材料用于氨吸附性能的研究[J]. 化工学报, 2022, 73(4): 1772-1780.
[10] 王祺, 房阔, 贺聪慧, 王凯军. 流动电极电容去离子技术综述:研究进展与未来挑战[J]. 化工学报, 2022, 73(3): 975-989.
[11] 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092.
[12] 王旭, 张乐瑶, 张昊轩, 演嘉辉, 吴玉帅, 吴冬, 陈汇勇, 马晓迅. 中空孔结构对W掺杂MFI分子筛丙酮吸附行为的研究[J]. 化工学报, 2022, 73(3): 1194-1206.
[13] 刘轩, 苏银皎, 滕阳, 张锴, 王鹏程, 李丽锋, 李圳. 超低排放燃煤机组硒的迁移转化及飞灰对其富集特性[J]. 化工学报, 2022, 73(2): 923-932.
[14] 王洒, 温怡静, 郭丹煜, 周欣, 李忠. 锆基MOF次级结构单元调控及轻烃吸附分离性能增强[J]. 化工学报, 2022, 73(2): 730-738.
[15] 张超, 陈健, 殷文华, 沈圆辉, 钮朝阳, 余秀鑫, 张东辉, 唐忠利. 变压吸附氢气纯化过程瞬态分析[J]. 化工学报, 2022, 73(1): 308-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!