化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4073-4080.DOI: 10.11949/0438-1157.20201736
收稿日期:
2020-12-03
修回日期:
2021-02-17
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
胡大鹏
作者简介:
刘庭江(1995—),男,硕士研究生,基金资助:
Tingjiang LIU1(),Jingxian WANG2,Yang YU1,Yiming ZHAO1,Dapeng HU1()
Received:
2020-12-03
Revised:
2021-02-17
Online:
2021-08-05
Published:
2021-08-05
Contact:
Dapeng HU
摘要:
振荡管内气体温度周期性变化,管束壁面会与管内气体进行同频脉动传热作用,对制冷产生一定影响。搭建振荡管静止式气波制冷实验平台,对壁面温度进行测量研究;同时建立非定常流动传热数值模型,对对流换热量进行研究。实验结果表明,管束壁面最终形成一定温度分布,减薄振荡管束外壁面厚度以改变轴向导热面积,会使稳定后的壁面温度分布更陡峭。数值计算表明,冷端壁面与冷气的对流换热会加热冷气,降低制冷深度。将管束壁厚从10 mm降低至5 mm,制冷性能实验结果表明最大制冷深度提升0.2 K(1.6膨胀比)、0.5 K(1.8膨胀比)与0.4 K(2.0膨胀比),验证了脉动壁面传热对制冷性能的影响。
中图分类号:
刘庭江, 王静娴, 于洋, 赵一鸣, 胡大鹏. 壁面脉动传热对气波制冷性能影响研究[J]. 化工学报, 2021, 72(8): 4073-4080.
Tingjiang LIU, Jingxian WANG, Yang YU, Yiming ZHAO, Dapeng HU. Research of wall pulsating heat transfer on performance of gas wave refrigeration[J]. CIESC Journal, 2021, 72(8): 4073-4080.
设备参数 | 数值 |
---|---|
通道长度/mm | 330 |
通道高度/mm | 18 |
通道数量/个 | 72 |
转子半径/mm | 250 |
转速/(r/min) | ≤2800 |
间隙尺寸/mm | ≤0.02 |
HP与HT喷嘴偏角/(°) | 12.5 |
表1 设备设计参数
Table 1 Design specifications
设备参数 | 数值 |
---|---|
通道长度/mm | 330 |
通道高度/mm | 18 |
通道数量/个 | 72 |
转子半径/mm | 250 |
转速/(r/min) | ≤2800 |
间隙尺寸/mm | ≤0.02 |
HP与HT喷嘴偏角/(°) | 12.5 |
序号 | 第一层边界层高度/mm | 计算时间 步长/s | 与1号壁面对流换热量 计算结果差异/% |
---|---|---|---|
1 | 0.0015 | 1×10-7 | 0 |
2 | 0.0015 | 1×10-6 | 11.4 |
3 | 0.0015 | 1×10-8 | 0.48 |
4 | 0.0010 | 1×10-7 | 0.21 |
5 | 0.0030 | 1×10-7 | 2.18 |
表2 网格与时间步长无关性验证
Table 2 Grid and time step independence test
序号 | 第一层边界层高度/mm | 计算时间 步长/s | 与1号壁面对流换热量 计算结果差异/% |
---|---|---|---|
1 | 0.0015 | 1×10-7 | 0 |
2 | 0.0015 | 1×10-6 | 11.4 |
3 | 0.0015 | 1×10-8 | 0.48 |
4 | 0.0010 | 1×10-7 | 0.21 |
5 | 0.0030 | 1×10-7 | 2.18 |
工况编码 | 膨胀比 | 高压口温度/K | 低温口温度/K | 转速/(r/min) |
---|---|---|---|---|
1 | 1.6 | 288.5 | 276.6 | 2142 |
2 | 1.8 | 287.7 | 270.0 | 2322 |
3 | 2.0 | 285.5 | 265.5 | 2232 |
表3 壁面温度测量实验工况
Table 3 Experimental conditions for temperature measurement
工况编码 | 膨胀比 | 高压口温度/K | 低温口温度/K | 转速/(r/min) |
---|---|---|---|---|
1 | 1.6 | 288.5 | 276.6 | 2142 |
2 | 1.8 | 287.7 | 270.0 | 2322 |
3 | 2.0 | 285.5 | 265.5 | 2232 |
膨胀比 | 转速n/(r/min) | 制冷深度?T/K | |
---|---|---|---|
10 mm | 5 mm | ||
1.6 | 2308 | 11.9 | 12.1 |
1.8 | 2412 | 17.0 | 17.5 |
2.0 | 2520 | 20.3 | 20.7 |
表4 不同壁厚制冷深度
Table 4 The refrigeration depth with defferent thickness
膨胀比 | 转速n/(r/min) | 制冷深度?T/K | |
---|---|---|---|
10 mm | 5 mm | ||
1.6 | 2308 | 11.9 | 12.1 |
1.8 | 2412 | 17.0 | 17.5 |
2.0 | 2520 | 20.3 | 20.7 |
1 | Brocher E, Maresca C, Bournay M H. Fluid dynamics of the resonance tube[J]. Journal of Fluid Mechanics, 1970, 43(2): 369-384. |
2 | Cotterlaz-Rennaz M. Wellhead gas refrigerator fieldstrips condensate [J]. World Oil, 1971:60-61. |
3 | 于洋, 刘培启, 王云磊, 等. 高效气波冷凝装置流动及热力学特性[J]. 化工学报, 2017, 68(8): 3039-3048. |
Yu Y, Liu P Q, Wang Y L, et al. Flow and thermodynamic properties of efficient gas wave refrigeration plant[J]. CIESC Journal, 2017, 68(8): 3039-3048. | |
4 | Shao J, Shen Y N, Feng Y P, et al. Thermodynamic analysis and experimental study on petroleum gas separation system incorporating RJE [C]//Proceeding of ICESR. 1986. |
5 | 方曜奇, 郑洁. 一种新型制冷技术: 气波制冷机[J]. 辽宁化工, 1990, 19(5): 51-54. |
Fang Y Q, Zheng J. A new refrigeration technology— gas wave refrigerator [J]. Liaoning Chemical Industry, 1990, 19(5): 51-54. | |
6 | 李学来, 郭荣伟. 振荡管内接触面的运动[J]. 空气动力学学报, 2000, 18(1): 120-124. |
Li X L, Guo R W. Movement of contact surface between gases in oscillating tube[J]. Acta Aerodynamica Sinica, 2000, 18(1): 120-124. | |
7 | 代玉强, 胡大鹏, 刘伟, 等. 含有复合阻尼结构的压力波制冷机振荡管内流动分析[J]. 低温与特气, 2003, 21(2): 23-24, 34. |
Dai Y Q, Hu D P, Liu W, et al. The CFD analysis of oscillatory tube equipped with compound damps[J]. Low Temperature and Specialty Gases, 2003, 21(2): 23-24, 34. | |
8 | 刘培启, 徐思远, 王泽武, 等. 偏角对气波制冷机制冷效率的影响及预测[J]. 化工学报, 2014, 65(11): 4271-4277. |
Liu P Q, Xu S Y, Wang Z W, et al. Influence of offset angle on refrigeration efficiency of gas wave refrigerator and prediction for optimal offset angle[J]. CIESC Journal, 2014, 65(11): 4271-4277. | |
9 | 赵文静, 胡大鹏, 刘培启, 等. 端口夹角对气波引射器性能的影响和预测[J]. 化工学报, 2012, 63(2): 572-577. |
Zhao W J, Hu D P, Liu P Q, et al. Influence of port angle on performance of gas wave ejector and prediction for optimal angle[J]. CIESC Journal, 2012, 63(2): 572-577. | |
10 | Hu D P, Li R F, Liu P Q, et al. The loss in charge process and effects on performance of wave rotor refrigerator[J]. International Journal of Heat and Mass Transfer, 2016, 100: 497-507. |
11 | 赵家权, 刘培启, 赵文静, 等. 激波管中非定常凝结现象的数值分析[J]. 化工学报, 2012, 63(4): 1050-1055. |
Zhao J Q, Liu P Q, Zhao W J, et al. Numerical analysis of unsteady condensation during expansion in shock tube[J]. CIESC Journal, 2012, 63(4): 1050-1055. | |
12 | 代玉强. 外循环耗散式气波制冷机理分析与实验研究[D]. 大连: 大连理工大学, 2010. |
Dai Y Q. Principle study and experimental investigation of gas waves refrigeration by aggregated thermal dissipation[D]. Dalian: Dalian University of Technology, 2010. | |
13 | 刘培启, 王海涛, 刘胜, 等. 双开口压力振荡管制冷性能实验研究[J]. 中国科技论文, 2016, 11(6): 717-720. |
Liu P Q, Wang H T, Liu S, et al. Experimental investigation of the performances for the refrigerator with double opening pressure oscillating tube[J]. China Sciencepaper, 2016, 11(6): 717-720. | |
14 | Dai Y Q, Zou J P, Zhu C, et al. Thermodynamic analysis of wave rotor refrigerators[J]. Journal of Thermal Science and Engineering Applications, 2010, 2(2): 021011. |
15 | Hu D P, Li R F, Liu P Q, et al. The design and influence of port arrangement on an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207-217. |
16 | Zhao J, Hu D. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work[J]. Shock Waves, 2017, 27(2): 325-332. |
17 | 赵家权. 自增压冷交换耗散式气波制冷原理及性能研究[D]. 大连: 大连理工大学, 2013. |
Zhao J Q. Studying on gas wave refrigeration enhancement by the pressurize characteristics of shock wave in oscillation tube [D]. Dalian: Dalian University of Technology, 2013. | |
18 | Hu D P, Yu Y, Liu P Q, et al. Improving refrigeration performance by using pressure exchange characteristic of wave rotor[J]. Journal of Energy Resources Technology, 2019, 141(2): 022004. |
19 | Hu D P, Yu Y, Liu P Q. Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2018, 130: 309-318. |
20 | 于洋. 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018. |
Yu Y. Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018. | |
21 | Harris S D, Ingham D B, Pop I. Transient boundary-layer heat transfer from a flat plate subjected to a sudden change in heat flux[J]. European Journal of Mechanics – B: Fluids, 2001, 20(2): 187-204. |
22 | Polidori G, Lachi M, Padet J. Unsteady convective heat transfer on a semi-infinite flat surface impulsively heated[J]. International Communications in Heat and Mass Transfer, 1998, 25(1): 33-42. |
23 | Yang L B, Han H Z, Li Y J, et al. A numerical study of the flow and heat transfer characteristics of outward convex corrugated tubes with twisted-tape insert[J]. Journal of Heat Transfer, 2016, 138(2): 024501. |
24 | Jo J C, Choi Y H, Choi S K. Numerical analysis of unsteady conjugate heat transfer and thermal stress for a curved piping system subjected to thermal stratification[J]. Journal of Pressure Vessel Technology, 2003, 125(4): 467-474. |
25 | Welch G E, Paxson D E, Wilson J, et al. Wave-rotor-enhanced gas turbine engine demonstrator[R]. NASA/TM-1999-209459,1999. |
26 | Paxson D E, Wilson J. Recent improvements to and validation of the one dimensional NASA wave rotor model[R]. NASA TM-106913,1995. |
27 | Elloye K J, Piechna J. Influence of the heat transfer on the operation of the pressure wave supercharger[J]. The Archive of Mechanical Engineering, 1999, (4): 297-309. |
28 | Li H W. Unsteady boundary layer and numerical modeling of transient heat transfer with application in wave rotors[D]. USA: Purdue University, 2009. |
29 | Deng S, Okamoto K, Teramoto S. Numerical investigation of heat transfer effects in small wave rotor[J]. Journal of Mechanical Science and Technology, 2015, 29(3): 939-950. |
30 | 王静娴, 郑友林, 胡恒, 等. 双开口气波制冷机振荡管内流动机理实验研究[J]. 化工学报, 2019, 70(4): 1302-1308. |
Wang J X, Zheng Y L, Hu H, et al. Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator[J]. CIESC Journal, 2019, 70(4): 1302-1308. | |
31 | Ozawa H. Visualization of unsteady boundary-layer transition on shock-tube wall using highly sensitive fast-response TSP[C]//20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Glasgow, Scotland. Reston, Virginia: AIAA, 2015. |
[1] | 高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. |
[2] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[3] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[4] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[5] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[6] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[7] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[8] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[9] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[10] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[11] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[12] | 郑书闽, 郭鹏程, 颜建国, 王帅, 李文博, 周淇. 微小通道内过冷流动沸腾阻力特性实验及预测研究[J]. 化工学报, 2023, 74(4): 1549-1560. |
[13] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[14] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
[15] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||