化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3904-3914.DOI: 10.11949/0438-1157.20220627
裴仁花1(), 王永洪1,2, 张新儒1,2(), 李晋平1,2
收稿日期:
2022-05-05
修回日期:
2022-06-27
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张新儒
作者简介:
裴仁花(1998—),女,硕士研究生,peirenhua2@163.com
基金资助:
Renhua PEI1(), Yonghong WANG1,2, Xinru ZHANG1,2(), Jinping LI1,2
Received:
2022-05-05
Revised:
2022-06-27
Online:
2022-09-05
Published:
2022-10-09
Contact:
Xinru ZHANG
摘要:
为了实现混合基质膜中CO2的高效分离,设计了羧基化多壁碳纳米管(CNT)和氨基化β-环糊精金属有机骨架(β-CD MOF)双填料(CM),并将其引入磺化聚醚醚酮(SPEEK)基质中,在膜内同时构建CO2扩散通道和亲和位点,增强了混合基质膜的分离性能。采用FTIR和BET表征了CM的化学结构和孔结构,借助膜的SEM、FTIR和力学性能表征了填料-聚合物界面相互作用。研究了CM的合成比例、含量、压力、温度和混合气等因素对混合基质膜分离性能的影响。结果表明:CM与SPEEK之间具有良好的相容性并为气体分子提供了快速的传递通道。在改性CNT与MOF的质量比为5∶5、添加量为7%(质量)以及0.1 MPa和25℃的条件下,混合基质膜的分离性能最优,CO2渗透性为844 Barrer,CO2/N2选择性为84,与纯SPEEK膜相比,分别提升了178%和163%,超过2019年上限。羧基化CNT的直孔通道缩短了CO2的扩散路径,同时改性β-CD MOF表面的氨基载体提升了CO2的溶解性,两者协同提高了混合基质膜的分离性能。此外,负载双填料的膜比单独负载相同含量的羧基化CNT或氨基化MOF的膜具有更好的分离性能。在360 h的测试过程中,混合基质膜保持较好的分离稳定性。
中图分类号:
裴仁花, 王永洪, 张新儒, 李晋平. 碳纳米管/环糊精金属有机骨架协同强化混合基质膜的CO2分离[J]. 化工学报, 2022, 73(9): 3904-3914.
Renhua PEI, Yonghong WANG, Xinru ZHANG, Jinping LI. Synergistic of carbon nanotube/cyclodextrin metal organic framework for enhancing CO2 separation of mixed matrix membranes[J]. CIESC Journal, 2022, 73(9): 3904-3914.
图1 β-CD MOF, 氨基化β-CD MOF, CM (质量比5∶5) 和羧基化CNT的红外光谱图
Fig.1 FTIR spectra of β-CD MOF, amino modified β-CD MOF, CM (mass ratio 5∶5) and carboxyl modified CNT
图2 羧基化CNT, CM (质量比5∶5) 和氨基化β-CD MOF的 氮气吸-脱附曲线(a)和孔径分布(b)
Fig.2 N2 adsorption-desorption isotherms (a) and pore size distribution (b) of carboxyl modified CNT, CM (mass ratio 5∶5) and amino modified β-CD MOF
图6 (a) 含水量与CM含量的关系; (b) CO2渗透性与总水量的相关性; (c) CO2/N2选择性与结合水的相关性; (d) 不同CM含量的膜的面积溶胀
Fig.6 (a) Relationship between water uptake and CM content; (b) Correlations between CO2 permeability and total water; (c) Correlations between CO2/N2 selectivity and bound water; (d) Area swelling of the membranes with different CM content
图7 羧基化CNT和氨基化β-CD MOF的质量比对SPEEK/CM混合基质膜分离性能的影响
Fig.7 Effect of mass ratio of carboxyl modified CNT and amino modified β-CD MOF on the separation performance of SPEEK/CM MMMs
样品 | BET比表面积/(m2·g-1) | 总孔体积/ (cm3·g-1) | BJH平均 孔径/nm |
---|---|---|---|
羧基化CNT | 117 | 0.26 | 8.90 |
CM | 34 | 0.08 | 9.52 |
氨基化β-CD MOF | 20 | 0.01 | 5.31 |
表1 羧基化CNT, CM (质量比5∶5) 和氨基化β-CD MOF的孔结构参数
Table 1 Pore structure parameters of carboxyl modified CNT, CM (mass ratio 5∶5) and amino modified β-CD MOF
样品 | BET比表面积/(m2·g-1) | 总孔体积/ (cm3·g-1) | BJH平均 孔径/nm |
---|---|---|---|
羧基化CNT | 117 | 0.26 | 8.90 |
CM | 34 | 0.08 | 9.52 |
氨基化β-CD MOF | 20 | 0.01 | 5.31 |
图9 进料气压力对纯SPEEK膜和SPEEK/CM混合基质膜的CO2渗透性和CO2/N2选择性的影响
Fig.9 Effect of feed pressure on the CO2 permeability and CO2/N2 selectivity of the pristine SPEEK membrane and SPEEK/CM MMMs
图11 纯气和混合气条件下纯SPEEK膜和SPEEK/CM混合基质膜的CO2渗透性和CO2/N2选择性
Fig.11 CO2 permeability and CO2/N2 selectivity of the pristine SPEEK membrane and SPEEK/CM MMMs under pure gas and mixed gas conditions
1 | Mahenthiran A V, Jawad Z A. A prospective concept on the fabrication of blend PES/PEG/DMF/NMP mixed matrix membranes with functionalised carbon nanotubes for CO2/N2 separation[J]. Membranes, 2021, 11(7): 519. |
2 | Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, et al. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions[J]. Progress in Polymer Science, 2014, 39(5): 817-861. |
3 | Cong H L, Radosz M, Towler B F, et al. Polymer-inorganic nanocomposite membranes for gas separation[J]. Separation and Purification Technology, 2007, 55(3): 281-291. |
4 | Rajkumar T, Kukkar D, Kim K H, et al. Cyclodextrin-metal-organic framework (CD-MOF): from synthesis to applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 72: 50-66. |
5 | Xu L, Xing C Y, Ke D, et al. Amino-functionalized β-cyclodextrin to construct green metal-organic framework materials for CO2 capture[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 3032-3041. |
6 | Kim S, Chen L, Johnson J K, et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation: theory and experiment[J]. Journal of Membrane Science, 2007, 294(1/2): 147-158. |
7 | Kim S, Jinschek J R, Chen H B, et al. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport[J]. Nano Letters, 2007, 7(9): 2806-2811. |
8 | Ismail A F, Goh P S, Sanip S M, et al. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation and Purification Technology, 2009, 70(1): 12-26. |
9 | Li X Q, Ma L, Zhang H Y, et al. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2015, 479: 1-10. |
10 | Li X, Yu S F, Li K, et al. Enhanced gas separation performance of pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes[J]. Separation and Purification Technology, 2020, 248: 117080. |
11 | Xin Q P, Liu T Y, Li Z, et al. Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal-organic framework for gas separation[J]. Journal of Membrane Science, 2015, 488: 67-78. |
12 | Wang Y H, Zhang X R, Li J P, et al. Enhancing the CO2 separation performance of SPEEK membranes by incorporation of polyaniline-decorated halloysite nanotubes[J]. Journal of Membrane Science, 2019, 573: 602-611. |
13 | Sha J Q, Wu L H, Li S X, et al. Synthesis and structure of new carbohydrate metal-organic frameworks and inclusion complexes[J]. Journal of Molecular Structure, 2015, 1101: 14-20. |
14 | Rao P S, Wey M Y, Tseng H H, et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application[J]. Microporous and Mesoporous Materials, 2008, 113(1/2/3): 499-510. |
15 | Wang Y H, Zhou Y, Zhang X R, et al. SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 275: 119189. |
16 | Wang Y H, Wang J J, Zhang X R, et al. Polyvinylamine/ZIF-8-decorated metakaolin composite membranes for CO2/N2 separation[J]. Separation and Purification Technology, 2021, 270: 118800. |
17 | Xin Q P, Li Z, Li C D, et al. Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide[J]. Journal of Materials Chemistry A, 2015, 3(12): 6629-6641. |
18 | Xin Q P, Ouyang J Y, Liu T Y, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
19 | Wang Y, Li M F, Wang L, et al. Improvement of the stabilities and antioxidant activities of polyphenols from the leaves of Chinese star anise (Illicium verum Hook. f.) using β-cyclodextrin-based metal-organic frameworks[J]. Journal of the Science of Food and Agriculture, 2021, 101(1): 287-296. |
20 | Zhu H T, Wang L N, Jie X M, et al. Improved interfacial affinity and CO2 separation performance of asymmetric mixed matrix membranes by incorporating postmodified MIL-53(Al)[J]. ACS Applied Materials & Interfaces, 2016, 8(34): 22696-22704. |
21 | Zhang J, Yu W G, Zhang X Y, et al. Enhancement of physical and mechanical properties of polyamide 66 fibers using polysiloxane-functionalized multi-walled carbon nanotubes[J]. Journal of Applied Polymer Science, 2021, 138(14): 50170. |
22 | Han T T, Xiao Y L, Tong M M, et al. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution[J]. Chemical Engineering Journal, 2015, 275: 134-141. |
23 | Liu C, Wang P, Liu X K, et al. Multifunctional β-cyclodextrin MOF-derived porous carbon as efficient herbicides adsorbent and potassium fertilizer[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14479-14489. |
24 | Al-Ghamdi S. Synthesis of nanoporous carbohydrate metal-organic framework and encapsulation of selected organic compounds[D]. Ann Arbor: Michigan State University, 2014. |
25 | Hou J P, Li X Q, Guo R L, et al. Improving CO2 separation performance by incorporating MWCNTs@mSiO2 core@shell filler in mixed matrix membranes[J]. Polymer Composites, 2018, 39(12): 4486-4495. |
26 | Zeng H Z, Li Y B, Wang C W. Using zeolite imidazole frameworks as ionic cross-linkers to improve the performance of composite SPEEK membrane[J]. Separation and Purification Technology, 2020, 236: 116258. |
27 | Sun H Z, Tang B B, Wu P Y. Two-dimensional zeolitic imidazolate framework/carbon nanotube hybrid networks modified proton exchange membranes for improving transport properties[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 35075-35085. |
28 | Chen L, Chai S G, Liu K, et al. Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface[J]. ACS Applied Materials & Interfaces, 2012, 4(8): 4398-4404. |
29 | Xin Q P, Liu H R, Zhang Y, et al. Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic submicrocapsules for efficient gas separation[J]. Journal of Membrane Science, 2017, 525: 330-341. |
30 | Ebadi Amooghin A, Omidkhah M, Kargari A. The effects of aminosilane grafting on NaY zeolite-Matrimid®5218 mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2015, 490: 364-379. |
31 | Li Y F, Wang S F, He G W, et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chemical Society Reviews, 2015, 44(1): 103-118. |
32 | Wu H, Li X Q, Li Y F, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 78-90. |
33 | Guo F, Li B Z, Ding R, et al. A novel composite material UiO-66@HNT/pebax mixed matrix membranes for enhanced CO2/N2 separation[J]. Membranes, 2021, 11(9): 693. |
34 | He R R, Cong S Z, Wang J, et al. Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4338-4344. |
35 | Sarfraz M, Ba-Shammakh M. Harmonious interaction of incorporating CNTs and zeolitic imidazole frameworks into polysulfone to prepare high performance MMMs for CO2 separation from humidified post combustion gases[J]. Brazilian Journal of Chemical Engineering, 2018, 35: 217-228. |
36 | Sarfraz M, Ba-Shammakh M. Pursuit of efficient CO2-capture membranes: graphene oxide- and MOF-integrated Ultrason® membranes[J]. Polymer Bulletin, 2018, 75(11): 5039-5059. |
37 | Song Z N, Qiu F, Zaia E W, et al. Dual-channel, molecular-sieving core/shell ZIF@MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation[J]. Nano Letters, 2017, 17(11): 6752-6758. |
38 | Wang Y H, Li L, Zhang X R, et al. Polyvinylamine/graphene oxide/PANI@CNTs mixed matrix composite membranes with enhanced CO2/N2 separation performance[J]. Journal of Membrane Science, 2019, 589: 117246. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[3] | 刘学安, 汤丽怡, 覃健, 唐大江, 童张法, 曲慧颖. 热解Ni/Co-ZIF-8制备碳纳米管桥连多孔碳及其在超级电容器中的应用[J]. 化工学报, 2022, 73(7): 3287-3297. |
[4] | 王立维, 王娟娟, 王永洪, 张新儒, 李晋平. 聚乙烯胺/Cu3(BTC)2-MMT-NH2混合基质膜的制备及气体传递性能[J]. 化工学报, 2022, 73(7): 3068-3077. |
[5] | 蔡楚玥, 方晓明, 张正国, 凌子夜. CNTs阵列增强石蜡/硅橡胶复合相变垫片的散热性能研究[J]. 化工学报, 2022, 73(7): 2874-2884. |
[6] | 于喆淼, 王志, 生梦龙, 邢广宇, 王纪孝. 界面聚合法制备用于脱氮提纯CH4的N2优先渗透ZIF-90/聚酰胺混合基质膜[J]. 化工学报, 2022, 73(7): 3273-3286. |
[7] | 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269. |
[8] | 韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753. |
[9] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[10] | 徐欢, 柯律, 张生辉, 张子林, 韩广东, 崔金声, 唐道远, 黄东辉, 高杰峰, 何新建. GO表面原位生长CNTs改善聚丙烯导热复合材料分散与界面形态[J]. 化工学报, 2022, 73(11): 5150-5157. |
[11] | 靳卓, 王永洪, 张新儒, 白雪, 李晋平. Pebax/a-MoS2/MIP-202混合基质膜的制备及CO2分离性能[J]. 化工学报, 2022, 73(10): 4527-4538. |
[12] | 吴诗德, 易峰, 平丹, 张逸飞, 郝健, 刘国际, 方少明. NH4Cl辅助热解制备镍-氮-碳纳米管催化剂及其电还原CO2性能[J]. 化工学报, 2022, 73(10): 4484-4497. |
[13] | 赵露, 宁国庆, 李兴洵. 掺硫碳纳米管作导电添加剂改进磷酸锰铁锂电化学性能[J]. 化工学报, 2021, 72(12): 6388-6398. |
[14] | 周毅,王永洪,张新儒,李晋平. PEBA/氮硫共掺杂多孔碳球混合基质膜的制备及CO2分离性能研究[J]. 化工学报, 2021, 72(10): 5237-5246. |
[15] | 王艳芳,毛恒,蔡玮玮,张傲率,徐李昊,赵之平. ZIF-L/PDMS混合基质膜蒸气渗透耦合发酵强化乙醇生产效率的研究[J]. 化工学报, 2021, 72(10): 5226-5236. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||