化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1743-1753.DOI: 10.11949/0438-1157.20211539
收稿日期:
2021-10-28
修回日期:
2022-01-04
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
高生旺
作者简介:
韩雪(1996—),女,硕士研究生,基金资助:
Xue HAN1,2(),Shengwang GAO2(
),Guoying WANG1,Xunfeng XIA2
Received:
2021-10-28
Revised:
2022-01-04
Online:
2022-04-05
Published:
2022-04-25
Contact:
Shengwang GAO
摘要:
采用浸渍-煅烧法制备了高效稳定的CeO2/CNT复合材料。利用X射线衍射、X射线光电子能谱和Raman光谱等手段对材料结构进行表征,并研究了复合材料活化过一硫酸盐(PMS)对磺胺异唑的降解性能。结果表明,在材料投加量为75 mg·L-1、PMS投加量为0.3 mmol·L-1、初始pH为5.36时,30 min降解率可达90%以上,50 min内可完全去除,反应过程符合伪一级反应动力学模型,活化剂使用5次后仍有77%的去除率。电子顺磁共振实验表明,SO4?-、?OH和1O2均参与了反应,碳纳米管表面缺陷可能与1O2的形成有关。CeO2的掺杂提高了碳纳米管中缺陷碳的含量,同时Ce3+/Ce4+为反应提供了更多活性位点,从而有效提升了碳纳米管活化PMS的性能,为铈基碳纳米管复合材料应用于过硫酸盐高级氧化技术提供了借鉴。
中图分类号:
韩雪, 高生旺, 王国英, 夏训峰. 铈掺杂强化碳纳米管活化过一硫酸盐实验研究[J]. 化工学报, 2022, 73(4): 1743-1753.
Xue HAN, Shengwang GAO, Guoying WANG, Xunfeng XIA. Research of enhanced carbon nanotubes activated peroxymonosulfate by cerium doping[J]. CIESC Journal, 2022, 73(4): 1743-1753.
样品 | 比表面积/ (m2?g-1) | 孔体积/ (cm3?g-1) | 平均孔径/ nm |
---|---|---|---|
NE-2 CNT CeO2 | 153.2261 118.9917 56.6373 | 0.514207 0.447211 0.198476 | 12.2907 13.2003 11.2545 |
表1 CNT和NE-2的结构性质
Table 1 Textural properties of CNT and NE-2
样品 | 比表面积/ (m2?g-1) | 孔体积/ (cm3?g-1) | 平均孔径/ nm |
---|---|---|---|
NE-2 CNT CeO2 | 153.2261 118.9917 56.6373 | 0.514207 0.447211 0.198476 | 12.2907 13.2003 11.2545 |
样品 | CeO2∶CNT/% | ID/IG |
---|---|---|
CNT | 0 | 0.74 |
NE-1 NE-2 NE-3 NE-4 NE-5 | 10 20 30 40 50 | 0.91 1.04 1.04 0.96 0.84 |
表2 材料的D带与G带强度比(ID/IG)
Table 2 The ID/IG values of materials
样品 | CeO2∶CNT/% | ID/IG |
---|---|---|
CNT | 0 | 0.74 |
NE-1 NE-2 NE-3 NE-4 NE-5 | 10 20 30 40 50 | 0.91 1.04 1.04 0.96 0.84 |
1 | He J, Tang J C, Zhang Z, et al. Magnetic ball-milled FeS@biochar as persulfate activator for degradation of tetracycline[J]. Chemical Engineering Journal, 2021, 404: 126997. |
2 | Guan R P, Yuan X Z, Wu Z B, et al. Efficient degradation of tetracycline by heterogeneous cobalt oxide/cerium oxide composites mediated with persulfate[J]. Separation and Purification Technology, 2019, 212: 223-232. |
3 | Zhang N Q, Chen J Y, Fang Z Q, et al. Ceria accelerated nanoscale zerovalent iron assisted heterogenous Fenton oxidation of tetracycline[J]. Chemical Engineering Journal, 2019, 369: 588-599. |
4 | Wang J L, Wang S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. |
5 | Shao F L, Wang Y J, Mao Y R, et al. Degradation of tetracycline in water by biochar supported nanosized iron activated persulfate[J]. Chemosphere, 2020, 261: 127844. |
6 | 岳敏, 王璟, 韩玉泽, 等. 盐助溶液燃烧法制备MnFe2O4催化过一硫酸盐降解双酚A[J]. 化工学报, 2020, 71(12): 5589-5598. |
Yue M, Wang J, Han Y Z, et al. Degradation of bisphenol A by peroxymonosulfate activated by MnFe2O4 prepared by salt-assisted solution combustion synthesis[J]. CIESC Journal, 2020, 71(12):5589-5598. | |
7 | 王柯晴, 徐劼, 沈芷璇, 等. LaCoO3钙钛矿活化过一硫酸盐降解萘普生[J]. 化工学报, 2020, 71(3): 1326-1334. |
Wang K Q, Xu J, Shen Z X, et al. Degradation of naproxen by peroxymonosulfate activated with LaCoO3 [J]. CIESC Journal, 2020, 71(3): 1326-1334. | |
8 | Chen S H, Ma L Y, Du Y G, et al. Highly efficient degradation of rhodamine B by carbon nanotubes-activated persulfate[J]. Separation and Purification Technology, 2021, 256: 117788. |
9 | Zhang X L, Feng M B, Qu R J, et al. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with nano-scaled magnetic CuFe2O4/MWCNTs[J]. Chemical Engineering Journal, 2016, 301: 1-11. |
10 | Niu L J, Wei T, Li Q G, et al. Ce-based catalysts used in advanced oxidation processes for organic wastewater treatment: a review[J]. Journal of Environmental Sciences, 2020, 96: 109-116. |
11 | Liu W, Zhou J B, Yao J. Shuttle-like CeO2/g-C3N4 composite combined with persulfate for the enhanced photocatalytic degradation of norfloxacin under visible light[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110062. |
12 | Shen C H, Wen X J, Fei Z H, et al. Visible-light-driven activation of peroxymonosulfate for accelerating ciprofloxacin degradation using CeO2/Co3O4 p-n heterojunction photocatalysts[J]. Chemical Engineering Journal, 2020, 391: 123612. |
13 | Li Z D, Liu D F, Zhao Y X, et al. Singlet oxygen dominated peroxymonosulfate activation by CuO-CeO2 for organic pollutants degradation: performance and mechanism[J]. Chemosphere, 2019, 233: 549-558. |
14 | Niu L J, Xian G, Long Z Q, et al. MnCeO x with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110228. |
15 | Dong C D, Huang C P, Nguyen T B, et al. The degradation of phthalate esters in marine sediments by persulfate over iron-cerium oxide catalyst[J]. Science of the Total Environment, 2019, 696: 133973. |
16 | Gonçalves A G, Órfão J J M, Pereira M F R. Ozonation of erythromycin over carbon materials and ceria dispersed on carbon materials[J]. Chemical Engineering Journal, 2014, 250: 366-376. |
17 | Wang J, Quan X, Chen S, et al. Enhanced catalytic ozonation by highly dispersed CeO2 on carbon nanotubes for mineralization of organic pollutants[J]. Journal of Hazardous Materials, 2019, 368: 621-629. |
18 | Feng K J, Song B, Li X F, et al. Enhanced photocatalytic performance of magnetic multi-walled carbon nanotubes/cerium dioxide nanocomposite[J]. Ecotoxicology and Environmental Safety, 2019, 171: 587-593. |
19 | Li M R, Chen C F, Xu L P, et al. Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production[J]. Journal of Energy Chemistry, 2021, 52: 51-59. |
20 | Zhang R, Li L, Chen L, et al. N-doped carbon nanotubes synthesized in high yield and decorated with CeO2 and SnO2 nanoparticles[J]. Journal of Alloys and Compounds, 2011, 509(35): 8620-8624. |
21 | Arshad A, Taj A, Rehman A, et al. In situ synthesis of highly populated CeO2 nanocubes grown on carbon nanotubes as a synergy hybrid and its electrocatalytic potential[J]. Journal of Materials Research and Technology, 2019, 8(6): 5336-5343. |
22 | Liang L L, Gao S W, Zhu J C, et al. The enhanced photocatalytic performance toward carbamazepine by nitrogen-doped carbon dots decorated on BiOBr/CeO2: mechanism insight and degradation pathways[J]. Chemical Engineering Journal, 2020, 391: 123599. |
23 | Cheng C, Gao S W, Zhu J C, et al. Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation[J]. Chemical Engineering Journal, 2020, 384: 123377. |
24 | Sun H Q, Kwan C, Suvorova A, et al. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals[J]. Applied Catalysis B: Environmental, 2014, 154/155: 134-141. |
25 | Zhu K, Bin Q, Shen Y Q, et al. In-situ formed N-doped bamboo-like carbon nanotubes encapsulated with Fe nanoparticles supported by biochar as highly efficient catalyst for activation of persulfate (PS) toward degradation of organic pollutants[J]. Chemical Engineering Journal, 2020, 402: 126090. |
26 | Kang J, Duan X G, Wang C, et al. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability[J]. Chemical Engineering Journal, 2018, 332: 398-408. |
27 | Cheng X, Guo H G, Zhang Y L, et al. Insights into the mechanism of nonradical reactions of persulfate activated by carbon nanotubes: activation performance and structure-function relationship[J]. Water Research, 2019, 157: 406-414. |
28 | Cao R Y, Zhou J J, Chen W W. Insights into membrane fouling implicated by physical adsorption of soluble microbial products onto D3520 resin[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 429-439. |
29 | Niu L J, Zhang G M, Xian G, et al. Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst: performance, activation mechanism and degradation pathway[J]. Separation and Purification Technology, 2021, 259: 118156. |
30 | Kang J, Zhang H Y, Duan X G, et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362: 251-261. |
31 | Deng R Y, He Q, Yang D X, et al. Enhanced synergistic performance of nano-Fe0-CeO2 composites for the degradation of diclofenac in DBD plasma[J]. Chemical Engineering Journal, 2021, 406: 126884. |
32 | Han C, Duan X G, Zhang M J, et al. Role of electronic properties in partition of radical and nonradical processes of carbocatalysis toward peroxymonosulfate activation[J]. Carbon, 2019, 153: 73-80. |
33 | Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. |
34 | Shang Y N, Xu X, Yue Q Y, et al. Nitrogen-doped carbon nanotubes encapsulating Fe/Zn nanoparticles as a persulfate activator for sulfamethoxazole degradation: role of encapsulated bimetallic nanoparticles and nonradical reaction[J]. Environmental Science: Nano, 2020, 7(5): 1444-1453. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 康超, 乔金鹏, 杨胜超, 彭超, 付元鹏, 刘斌, 刘建荣, Aleksandrova Tatiana, 段晨龙. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783-2799. |
[6] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[9] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[10] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[13] | 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927. |
[14] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[15] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||