化工学报 ›› 2022, Vol. 73 ›› Issue (9): 3915-3928.DOI: 10.11949/0438-1157.20220578
收稿日期:
2022-04-24
修回日期:
2022-06-05
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张香兰
作者简介:
刘潜(1995—),男,博士研究生,460905289@qq.com
基金资助:
Qian LIU(), Xianglan ZHANG(
), Zhiping LI, Yulong LI, Mengxing HAN
Received:
2022-04-24
Revised:
2022-06-05
Online:
2022-09-05
Published:
2022-10-09
Contact:
Xianglan ZHANG
摘要:
低温煤焦油中酚类化合物的高效分离在工业上具有重要意义。采用COSMO-RS模型对40种用于间甲酚-异丙苯分离的低共熔溶剂进行筛选,结合σ-profile和σ-potential对筛选得到的低共熔溶剂的高萃取性能进行分析。并采用液液相平衡实验对筛选结果进行验证,优化了萃取工艺条件。结果表明,COSMO-RS模型筛选得到的氯化胆碱(ChCl)∶乙二醇(EG)(1∶2)、ChCl∶丙三醇(Gly)(1∶2)、ChCl∶乳酸(LA)(1∶2)三种低共熔溶剂与间甲酚之间存在较强的氢键相互作用,与异丙苯之间存在排斥作用。液液相平衡实验证实了COSMO-RS筛选结果的可靠性,其中ChCl∶EG(1∶2)具有最高的分配系数和选择性系数,且黏度最低,被选定为最佳的低共熔溶剂。在25℃、ChCl∶EG(1∶2)与模型油质量比为1∶1时,ChCl∶EG(1∶2)对间甲酚萃取率高达98.41%,同时异丙苯夹带量仅为8.41%,并且具有良好的循环使用性能。
中图分类号:
刘潜, 张香兰, 李志平, 李玉龙, 韩梦醒. 油酚分离过程低共熔溶剂的筛选及萃取性能研究[J]. 化工学报, 2022, 73(9): 3915-3928.
Qian LIU, Xianglan ZHANG, Zhiping LI, Yulong LI, Mengxing HAN. Screening of deep eutectic solvents and study on extraction performance for oil-hydroxybenzene separation[J]. CIESC Journal, 2022, 73(9): 3915-3928.
HBA | HBD | HBA∶HBD(molar ratio) | Abbreviation |
---|---|---|---|
choline chloride | ethylene glycol | 1∶2 | ChCl∶EG (1∶2) |
choline chloride | glycerol | 1∶2 | ChCl∶Gly (1∶2) |
choline chloride | tetraethylene glycol | 1∶3 | ChCl∶TEG (1∶3) |
choline chloride | xylitol | 1∶2 | ChCl∶Xy (1∶2) |
choline chloride | D-sorbitol | 1∶2 | ChCl∶Ds (1∶2) |
choline chloride | 2,2,2-trifluoroacetamide | 1∶2 | ChCl∶TFA (1∶2) |
choline chloride | trifluoroacetic acid | 1∶2 | ChCl∶TrFA (1∶2) |
choline chloride | p-toluenesulfonic acid | 1∶2 | ChCl∶PTSA (1∶2) |
choline chloride | lactic acid | 1∶2 | ChCl∶LA (1∶2) |
choline chloride | lactic acid | 1∶3 | ChCl∶LA (1∶3) |
choline chloride | lactic acid | 1∶4 | ChCl∶LA (1∶4) |
choline chloride | lactic acid | 1∶5 | ChCl∶LA (1∶5) |
choline chloride | lactic acid | 1∶6 | ChCl∶LA (1∶6) |
choline chloride | oxalic acid | 1∶2 | ChCl∶OA (1∶2) |
choline chloride | malonic acid | 1∶2 | ChCl∶MA (1∶2) |
choline chloride | malic acid | 1∶2 | ChCl∶MAA (1∶2) |
choline bromide | glycerol | 1∶2 | ChBr∶Gly (1∶2) |
choline bromide | trifluoroacetic acid | 1∶2 | ChBr∶TrFA (1∶2) |
betaine hydrochloride | glycerol | 1∶2 | BHC∶Gly (1∶2) |
betaine hydrochloride | trifluoroacetic acid | 1∶2 | BHC∶TrFA (1∶2) |
tetraethylammonium chloride | glycerol | 1∶5 | TEAC∶Gly (1∶5) |
tetraethylammonium chloride | D-sorbitol | 1∶3 | TEAC∶Ds (1∶3) |
tetraethylammonium chloride | 2,2,2-trifluoroacetamide | 1∶3 | TEAC∶TFA (1∶3) |
tetraethylammonium chloride | benzoic acid | 1∶4 | TEAC∶BA (1∶4) |
tetraethylammonium chloride | oxalic acid | 1∶3 | TEAC∶OA (1∶3) |
tetraethylammonium bromide | ethylene glycol | 1∶4 | TEAB∶EG (1∶4) |
tetraethylammonium bromide | glycerol | 1∶4 | TEAB∶Gly (1∶4) |
tetraethylammonium bromide | trifluoroacetic acid | 1∶4 | TEAB∶TrFA (1∶4) |
tetraethylammonium bromide | glutaric acid | 1∶4 | TEAB∶GA (1∶4) |
tetraethylammonium bromide | benzoic acid | 1∶4 | TEAB∶BA (1∶4) |
tetraethylammonium bromide | levulinic acid | 1∶4 | TEAB∶LEA (1∶4) |
tetraethylammonium bromide | oxalic acid | 1∶4 | TEAB∶OA (1∶4) |
tetrabutylammonium bromide | ethylene glycol | 1∶4 | TBAB∶EG (1∶4) |
tetrabutylammonium bromide | benzoic acid | 1∶4 | TBAB∶BA (1∶4) |
tetrabutylammonium bromide | levulinic acid | 1∶4 | TBAB∶LEA (1∶4) |
tetrabutylphosphonium bromide | ethylene glycol | 1∶4 | TBPB∶EG (1∶4) |
tetrabutylphosphonium bromide | benzoic acid | 1∶4 | TBPB∶BA (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶4 | BTMAC∶Gly (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶5 | BTMAC∶Gly (1∶5) |
benzyltrimethylammonium chloride | glycerol | 1∶6 | BTMAC∶Gly (1∶6) |
表1 待筛选的低共熔溶剂
Table 1 List of deep eutectic solvents screened
HBA | HBD | HBA∶HBD(molar ratio) | Abbreviation |
---|---|---|---|
choline chloride | ethylene glycol | 1∶2 | ChCl∶EG (1∶2) |
choline chloride | glycerol | 1∶2 | ChCl∶Gly (1∶2) |
choline chloride | tetraethylene glycol | 1∶3 | ChCl∶TEG (1∶3) |
choline chloride | xylitol | 1∶2 | ChCl∶Xy (1∶2) |
choline chloride | D-sorbitol | 1∶2 | ChCl∶Ds (1∶2) |
choline chloride | 2,2,2-trifluoroacetamide | 1∶2 | ChCl∶TFA (1∶2) |
choline chloride | trifluoroacetic acid | 1∶2 | ChCl∶TrFA (1∶2) |
choline chloride | p-toluenesulfonic acid | 1∶2 | ChCl∶PTSA (1∶2) |
choline chloride | lactic acid | 1∶2 | ChCl∶LA (1∶2) |
choline chloride | lactic acid | 1∶3 | ChCl∶LA (1∶3) |
choline chloride | lactic acid | 1∶4 | ChCl∶LA (1∶4) |
choline chloride | lactic acid | 1∶5 | ChCl∶LA (1∶5) |
choline chloride | lactic acid | 1∶6 | ChCl∶LA (1∶6) |
choline chloride | oxalic acid | 1∶2 | ChCl∶OA (1∶2) |
choline chloride | malonic acid | 1∶2 | ChCl∶MA (1∶2) |
choline chloride | malic acid | 1∶2 | ChCl∶MAA (1∶2) |
choline bromide | glycerol | 1∶2 | ChBr∶Gly (1∶2) |
choline bromide | trifluoroacetic acid | 1∶2 | ChBr∶TrFA (1∶2) |
betaine hydrochloride | glycerol | 1∶2 | BHC∶Gly (1∶2) |
betaine hydrochloride | trifluoroacetic acid | 1∶2 | BHC∶TrFA (1∶2) |
tetraethylammonium chloride | glycerol | 1∶5 | TEAC∶Gly (1∶5) |
tetraethylammonium chloride | D-sorbitol | 1∶3 | TEAC∶Ds (1∶3) |
tetraethylammonium chloride | 2,2,2-trifluoroacetamide | 1∶3 | TEAC∶TFA (1∶3) |
tetraethylammonium chloride | benzoic acid | 1∶4 | TEAC∶BA (1∶4) |
tetraethylammonium chloride | oxalic acid | 1∶3 | TEAC∶OA (1∶3) |
tetraethylammonium bromide | ethylene glycol | 1∶4 | TEAB∶EG (1∶4) |
tetraethylammonium bromide | glycerol | 1∶4 | TEAB∶Gly (1∶4) |
tetraethylammonium bromide | trifluoroacetic acid | 1∶4 | TEAB∶TrFA (1∶4) |
tetraethylammonium bromide | glutaric acid | 1∶4 | TEAB∶GA (1∶4) |
tetraethylammonium bromide | benzoic acid | 1∶4 | TEAB∶BA (1∶4) |
tetraethylammonium bromide | levulinic acid | 1∶4 | TEAB∶LEA (1∶4) |
tetraethylammonium bromide | oxalic acid | 1∶4 | TEAB∶OA (1∶4) |
tetrabutylammonium bromide | ethylene glycol | 1∶4 | TBAB∶EG (1∶4) |
tetrabutylammonium bromide | benzoic acid | 1∶4 | TBAB∶BA (1∶4) |
tetrabutylammonium bromide | levulinic acid | 1∶4 | TBAB∶LEA (1∶4) |
tetrabutylphosphonium bromide | ethylene glycol | 1∶4 | TBPB∶EG (1∶4) |
tetrabutylphosphonium bromide | benzoic acid | 1∶4 | TBPB∶BA (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶4 | BTMAC∶Gly (1∶4) |
benzyltrimethylammonium chloride | glycerol | 1∶5 | BTMAC∶Gly (1∶5) |
benzyltrimethylammonium chloride | glycerol | 1∶6 | BTMAC∶Gly (1∶6) |
Raffinate phase | Extract phase | D | S | ||||
---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w'1 | w'2 | w'3 | ||
1. {[ChCl∶EG (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0041 | 0.9959 | 0.8481 | 0.1241 | 0.0278 | 30.27 | 1083.20 |
0.0000 | 0.0054 | 0.9946 | 0.8099 | 0.1589 | 0.0312 | 29.42 | 936.75 |
0.0003 | 0.0066 | 0.9931 | 0.7768 | 0.1899 | 0.0333 | 28.77 | 856.59 |
0.0006 | 0.0078 | 0.9916 | 0.7426 | 0.2188 | 0.0386 | 28.06 | 721.56 |
0.0012 | 0.0089 | 0.9899 | 0.7103 | 0.2445 | 0.0452 | 27.48 | 602.79 |
0.0022 | 0.0099 | 0.9879 | 0.6810 | 0.2687 | 0.0503 | 27.14 | 532.90 |
0.0031 | 0.0108 | 0.9861 | 0.6530 | 0.2908 | 0.0562 | 26.93 | 473.02 |
0.0039 | 0.0116 | 0.9845 | 0.6265 | 0.3105 | 0.0630 | 26.77 | 418.09 |
2. {[ChCl∶Gly (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0081 | 0.9919 | 0.8561 | 0.1223 | 0.0216 | 15.10 | 694.44 |
0.0001 | 0.0108 | 0.9891 | 0.8194 | 0.1566 | 0.0240 | 14.50 | 596.87 |
0.0005 | 0.0136 | 0.9859 | 0.7860 | 0.1881 | 0.0259 | 13.83 | 526.02 |
0.0009 | 0.0162 | 0.9829 | 0.7530 | 0.2170 | 0.0300 | 13.39 | 439.20 |
0.0017 | 0.0188 | 0.9795 | 0.7227 | 0.2443 | 0.0330 | 12.99 | 385.42 |
0.0029 | 0.0211 | 0.9760 | 0.6911 | 0.2689 | 0.0400 | 12.74 | 310.60 |
0.0041 | 0.0237 | 0.9722 | 0.6626 | 0.2906 | 0.0468 | 12.26 | 254.86 |
0.0056 | 0.0257 | 0.9687 | 0.6333 | 0.3105 | 0.0562 | 12.08 | 208.30 |
3. {[ChCl∶LA (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0086 | 0.9914 | 0.8528 | 0.1226 | 0.0246 | 14.25 | 573.41 |
0.0002 | 0.0115 | 0.9883 | 0.8137 | 0.1568 | 0.0295 | 13.63 | 456.49 |
0.0006 | 0.0141 | 0.9853 | 0.7782 | 0.1862 | 0.0356 | 13.20 | 365.12 |
0.0010 | 0.0168 | 0.9822 | 0.7407 | 0.2155 | 0.0438 | 12.83 | 287.50 |
0.0019 | 0.0195 | 0.9786 | 0.7088 | 0.2408 | 0.0504 | 12.35 | 239.88 |
0.0029 | 0.0219 | 0.9752 | 0.6749 | 0.2636 | 0.0615 | 12.04 | 190.76 |
0.0044 | 0.0241 | 0.9715 | 0.6439 | 0.2830 | 0.0731 | 11.74 | 156.06 |
0.0058 | 0.0260 | 0.9682 | 0.6095 | 0.3002 | 0.0903 | 11.55 | 123.84 |
表2 101.3 kPa、25℃下{不同低共熔溶剂 + 间甲酚 + 异丙苯}三元体系的液液相平衡数据
Table 2 LLE data of {different DESs + m-cresol + cumene} ternary system at 101.3 kPa and 25℃
Raffinate phase | Extract phase | D | S | ||||
---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w'1 | w'2 | w'3 | ||
1. {[ChCl∶EG (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0041 | 0.9959 | 0.8481 | 0.1241 | 0.0278 | 30.27 | 1083.20 |
0.0000 | 0.0054 | 0.9946 | 0.8099 | 0.1589 | 0.0312 | 29.42 | 936.75 |
0.0003 | 0.0066 | 0.9931 | 0.7768 | 0.1899 | 0.0333 | 28.77 | 856.59 |
0.0006 | 0.0078 | 0.9916 | 0.7426 | 0.2188 | 0.0386 | 28.06 | 721.56 |
0.0012 | 0.0089 | 0.9899 | 0.7103 | 0.2445 | 0.0452 | 27.48 | 602.79 |
0.0022 | 0.0099 | 0.9879 | 0.6810 | 0.2687 | 0.0503 | 27.14 | 532.90 |
0.0031 | 0.0108 | 0.9861 | 0.6530 | 0.2908 | 0.0562 | 26.93 | 473.02 |
0.0039 | 0.0116 | 0.9845 | 0.6265 | 0.3105 | 0.0630 | 26.77 | 418.09 |
2. {[ChCl∶Gly (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0081 | 0.9919 | 0.8561 | 0.1223 | 0.0216 | 15.10 | 694.44 |
0.0001 | 0.0108 | 0.9891 | 0.8194 | 0.1566 | 0.0240 | 14.50 | 596.87 |
0.0005 | 0.0136 | 0.9859 | 0.7860 | 0.1881 | 0.0259 | 13.83 | 526.02 |
0.0009 | 0.0162 | 0.9829 | 0.7530 | 0.2170 | 0.0300 | 13.39 | 439.20 |
0.0017 | 0.0188 | 0.9795 | 0.7227 | 0.2443 | 0.0330 | 12.99 | 385.42 |
0.0029 | 0.0211 | 0.9760 | 0.6911 | 0.2689 | 0.0400 | 12.74 | 310.60 |
0.0041 | 0.0237 | 0.9722 | 0.6626 | 0.2906 | 0.0468 | 12.26 | 254.86 |
0.0056 | 0.0257 | 0.9687 | 0.6333 | 0.3105 | 0.0562 | 12.08 | 208.30 |
3. {[ChCl∶LA (1∶2)] (1) + m-cresol (2) + cumene (3)} | |||||||
0.0000 | 0.0086 | 0.9914 | 0.8528 | 0.1226 | 0.0246 | 14.25 | 573.41 |
0.0002 | 0.0115 | 0.9883 | 0.8137 | 0.1568 | 0.0295 | 13.63 | 456.49 |
0.0006 | 0.0141 | 0.9853 | 0.7782 | 0.1862 | 0.0356 | 13.20 | 365.12 |
0.0010 | 0.0168 | 0.9822 | 0.7407 | 0.2155 | 0.0438 | 12.83 | 287.50 |
0.0019 | 0.0195 | 0.9786 | 0.7088 | 0.2408 | 0.0504 | 12.35 | 239.88 |
0.0029 | 0.0219 | 0.9752 | 0.6749 | 0.2636 | 0.0615 | 12.04 | 190.76 |
0.0044 | 0.0241 | 0.9715 | 0.6439 | 0.2830 | 0.0731 | 11.74 | 156.06 |
0.0058 | 0.0260 | 0.9682 | 0.6095 | 0.3002 | 0.0903 | 11.55 | 123.84 |
System | Extractant① | T/℃ | η/(mPa·s) | E/% | N/% |
---|---|---|---|---|---|
m-cresol (30%) + cumene (70%) | ChCl∶EG (1∶2) | 25 | 43.87 | 98.41 | 8.41 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶EG (1∶2) | 25 | 51.81 | 98.11 | 8.34 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶Gly (1∶2) | 25 | 317 | 95.17 | 7.06 |
m-cresol (30%) + cumene (70%) | [emim][HSO4] | 25 | 1172 | 98.25 | 7.28 |
m-cresol (30%) + cumene (70%) | [emim][OAc] | 25 | 132.9 | 99.5 | 26.93 |
m-cresol (30%) + cumene (70%) | [bmim][PF6] | 25 | 366 | 89.59 | 27.67 |
表3 不同萃取剂的萃取性能及黏度对比
Table 3 Comparison of extraction performance and viscosity with different extractants
System | Extractant① | T/℃ | η/(mPa·s) | E/% | N/% |
---|---|---|---|---|---|
m-cresol (30%) + cumene (70%) | ChCl∶EG (1∶2) | 25 | 43.87 | 98.41 | 8.41 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶EG (1∶2) | 25 | 51.81 | 98.11 | 8.34 |
m-cresol (30%) + cumene (70%) | [emim][HSO4]∶Gly (1∶2) | 25 | 317 | 95.17 | 7.06 |
m-cresol (30%) + cumene (70%) | [emim][HSO4] | 25 | 1172 | 98.25 | 7.28 |
m-cresol (30%) + cumene (70%) | [emim][OAc] | 25 | 132.9 | 99.5 | 26.93 |
m-cresol (30%) + cumene (70%) | [bmim][PF6] | 25 | 366 | 89.59 | 27.67 |
1 | Jiao T T, Li C S, Zhuang X L, et al. The new liquid-liquid extraction method for separation of phenolic compounds from coal tar[J]. Chemical Engineering Journal, 2015, 266: 148-155. |
2 | Jiao T T, Wang H Y, Dai F, et al. Thermodynamics study on the separation process of cresols from hexane via deep eutectic solvent formation[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8848-8857. |
3 | Gai H J, Qiao L, Zhong C Y, et al. A solvent based separation method for phenolic compounds from low-temperature coal tar[J]. Journal of Cleaner Production, 2019, 223: 1-11. |
4 | 刘潜, 何天琦, 刘小菡, 等. 乙二醇-尿素复配溶剂萃取分离模拟油酚混合物[J]. 化学工业与工程, 2020, 37(4): 23-29. |
Liu Q, He T Q, Liu X H, et al. Extraction of phenolic compounds from model oil with glycol-urea composite extractant[J]. Chemical Industry and Engineering, 2020, 37(4): 23-29. | |
5 | Liu X K, Zhang X L. Solvent screening and liquid-liquid measurement for extraction of phenols from aromatic hydrocarbon mixtures[J]. The Journal of Chemical Thermodynamics, 2019, 129: 12-21. |
6 | Jiao T T, Gong M M, Zhuang X L, et al. A new separation method for phenolic compounds from low-temperature coal tar with urea by complex formation[J]. Journal of Industrial and Engineering Chemistry, 2015, 29: 344-348. |
7 | 彭艳枚, 崔现宝, 张缨, 等. 甲醇-乙酸甲酯-1-丁基-3-甲基咪唑双三氟甲磺酰亚胺盐的等压汽液平衡[J]. 化学工业与工程, 2013, 30(6): 27-31. |
Peng Y M, Cui X B, Zhang Y, et al. Isobaric vapor-liquid equilibrium for methanol-methyl acetate-1-butyl-3-methylimidazolium bis[(trifluoromethyl) sulfonyl]imide at 101.3 kPa[J]. Chemical Industry and Engineering, 2013, 30(6): 27-31. | |
8 | Hou Y C, Ren Y H, Peng W, et al. Separation of phenols from oil using imidazolium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18071-18075. |
9 | Yao C F, Hou Y C, Ren S H, et al. Efficient separation of phenolic compounds from model oils by dual-functionalized ionic liquids[J]. Chemical Engineering and Processing-Process Intensification, 2018, 128: 216-222. |
10 | 李文秀, 张羽, 曹颖, 等. 离子液体用于四氢呋喃-乙醇-水三元共沸物系分离的研究[J]. 化工学报, 2020, 71(4): 1676-1682. |
Li W X, Zhang Y, Cao Y, et al. Study on separation of tetrahydrofuran-ethanol-water ternary azeotrope system by ionic liquid[J]. CIESC Journal, 2020, 71(4): 1676-1682. | |
11 | Jiao T T, Qin X Z, Zhang H W, et al. Separation of phenol and pyridine from coal tar via liquid-liquid extraction using deep eutectic solvents[J]. Chemical Engineering Research and Design, 2019, 145: 112-121. |
12 | Li G S, Xie Q, Liu Q, et al. Separation of phenolic compounds from oil mixtures by betaine-based deep eutectic solvents[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(6): e2515. |
13 | Yi L, Feng J, Li W Y, et al. High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(8): 7777-7783. |
14 | Liu Q, Zhang X L. Systematic method of screening deep eutectic solvents as extractive solvents for m-cresol/cumene separation[J]. Separation and Purification Technology, 2022, 291: 120853. |
15 | Song Z, Hu X T, Wu H Y, et al. Systematic screening of deep eutectic solvents as sustainable separation media exemplified by the CO2 capture process[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(23): 8741-8751. |
16 | Lei Z G, Zhang J G, Li Q S, et al. UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2697-2704. |
17 | Lei Z G, Dai C N, Liu X, et al. Extension of the UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12135-12144. |
18 | 董一春. 离子液体预测型热力学模型及其在萃取精馏分离甲缩醛和甲醇中的应用[D]. 北京: 北京化工大学, 2020. |
Dong Y C. Predictive thermodynamics models for ionic liquids and their application in the separation of methylal and methanol mixture by extractive distillation[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
19 | Chen G Z, Song Z, Qi Z W, et al. Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems[J]. AIChE Journal, 2021, 67(4): e17171. |
20 | Song Z, Zhang C Y, Qi Z W, et al. Computer-aided design of ionic liquids as solvents for extractive desulfurization[J]. AIChE Journal, 2018, 64(3): 1013-1025. |
21 | Chao H, Song Z, Cheng H Y, et al. Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation[J]. Separation and Purification Technology, 2018, 196: 157-165. |
22 | Song Z, Li X X, Chao H, et al. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process[J]. Green Energy & Environment, 2019, 4(2): 154-165. |
23 | Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilibria, 2000, 172(1): 43-72. |
24 | 陈燕鑫, 童赛, 张美景, 等. 基于COSMO-RS模型L-丙氨酸-L-谷胺酰胺结晶溶剂的筛选及其溶液热力学性质研究[J]. 化学工业与工程, 2016, 33(3): 31-38. |
Chen Y X, Tong S, Zhang M J, et al. Solvent screening via COSMO-RS model and measurement of solution thermodynamics for crystallization of N-(2)-L-alanyl-L-glutamine[J]. Chemical Industry and Engineering, 2016, 33(3): 31-38. | |
25 | 刘潜, 张香兰, 李巍. 基于COSMO-RS模型的分离油酚混合物的离子液体萃取剂筛选[J]. 化工学报, 2018, 69(12): 5100-5111. |
Liu Q, Zhang X L, Li W. Screening ionic liquids solvent for separation of oil and hydroxybenzene mixtures based on COSMO-RS model[J]. CIESC Journal, 2018, 69(12): 5100-5111. | |
26 | Hizaddin H F, Ramalingam A, Hashim M A, et al. Evaluating the performance of deep eutectic solvents for use in extractive denitrification of liquid fuels by the conductor-like screening model for real solvents[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3470-3487. |
27 | Hadj-Kali M K, Hizaddin H F, Wazeer I, et al. Liquid-liquid separation of azeotropic mixtures of ethanol/alkanes using deep eutectic solvents: COSMO-RS prediction and experimental validation[J]. Fluid Phase Equilibria, 2017, 448: 105-115. |
28 | 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896-4907. |
Cheng H Y, Qi Z W. Research progress of deep eutectic solvent for extractive separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4896-4907. | |
29 | 吴明尧. 基于季铵盐低共熔溶剂的柑橘精油脱萜过程研究[D]. 上海: 华东理工大学, 2021. |
Wu M Y. Extractive deterpenation of citrus essential oils using quaternary ammonium-based deep eutectic solvents[D]. Shanghai: East China University of Science and Technology, 2021. | |
30 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS[J]. CIESC Journal, 2019, 70(1): 146-153. | |
31 | 李军芳, 毛学锋, 胡发亭. 中低温煤焦油酚油馏分中酚类化合物的组成[J]. 煤炭转化, 2019, 42(2): 32-38. |
Li J F, Mao X F, Hu F T. Composition of phenolic compounds in phenol oil distillate of medium and low temperature coal tar[J]. Coal Conversion, 2019, 42(2): 32-38. | |
32 | 易兰. 煤直接转化液体产物中芳香族化合物缔合结构解析与组分分离[D]. 杭州: 浙江大学, 2020. |
Yi L. Association structure analysis and component separation of aromatic compounds in liquid products from direct coal conversion[D]. Hangzhou: Zhejiang University, 2020. | |
33 | Ji Y A, Hou Y C, Ren S H, et al. Highly efficient separation of phenolic compounds from oil mixtures by imidazolium-based dicationic ionic liquids via forming deep eutectic solvents[J]. Energy & Fuels, 2017, 31(9): 10274-10282. |
34 | Liu Q, Zhang X L, Li W. Separation of m-cresol from aromatic hydrocarbon and alkane using ionic liquids via hydrogen bond interaction[J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2675-2686. |
35 | 李明宴, 李进龙, 彭昌军, 等. 基于COSMO-SAC模型研究离子液体对氨水溶液汽液平衡的影响[J]. 化工学报, 2022, 73(3): 1044-1053. |
Li M Y, Li J L, Peng C J, et al. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC[J]. CIESC Journal, 2022, 73(3): 1044-1053. | |
36 | Salleh Z, Wazeer I, Mulyono S, et al. Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents-COSMO-RS screening and experimental validation[J]. The Journal of Chemical Thermodynamics, 2017, 104: 33-44. |
37 | Cheng H Y, Liu C Y, Zhang J J, et al. Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 246-252. |
38 | Wu Z M, Liu C Y, Cheng H Y, et al. Tuned extraction and regeneration process for separation of hydrophobic compounds by aqueous ionic liquid[J]. Journal of Molecular Liquids, 2020, 308: 113032. |
39 | Yao C F, Hou Y C, Ren S H, et al. Selective extraction of aromatics from aliphatics using dicationic ionic liquid-solvent composite extractants[J]. Journal of Molecular Liquids, 2019, 291: 111267. |
40 | 方静, 张淑婷, 李婷婷, 等. 离子液体用于燃油萃取脱硫的选择与过程优化[J]. 化工学报, 2017, 68(9): 3434-3441. |
Fang J, Zhang S T, Li T T, et al. Selection and process optimization of ionic liquids for desulfurization[J]. CIESC Journal, 2017, 68(9): 3434-3441. | |
41 | Yao C F, Hou Y C, Ren S H, et al. Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents[J]. Chemical Engineering Journal, 2017, 326: 620-626. |
42 | Ji Y A, Hou Y C, Ren S H, et al. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction[J]. Fuel, 2019, 239: 926-934. |
43 | Wu Z M, Zeng Q, Cheng H Y, et al. Extractive separation of tetralin-dodecane mixture using tetrabutylphosphonium bromide-based deep eutectic solvent[J]. Chemical Engineering and Processing-Process Intensification, 2020, 149: 107822. |
44 | Guo W J, Hou Y C, Wu W Z, et al. Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents[J]. Green Chemistry, 2013, 15(1): 226-229. |
45 | Liu Q, Zhang X L. Highly efficient separation of phenolic compounds from low-temperature coal tar by composite extractants with low viscosity[J]. Journal of Molecular Liquids, 2022, 360: 119417. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[3] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[4] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[5] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[6] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[7] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[8] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[9] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[10] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[11] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
[12] | 程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652. |
[13] | 高靖博, 孙强, 李青, 王逸伟, 郭绪强. 考虑水合物结构转变的含氢气体水合物相平衡模型[J]. 化工学报, 2023, 74(2): 666-673. |
[14] | 蔡进, 王晓辉, 汤涵, 陈光进, 孙长宇. TBAB水溶液体系中半笼型水合物的相平衡预测模型[J]. 化工学报, 2023, 74(1): 408-415. |
[15] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 324
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||