化工学报 ›› 2023, Vol. 74 ›› Issue (10): 4182-4190.DOI: 10.11949/0438-1157.20230820
李晨亚1(), 刘捷1, 王建芝1, 刘艳萍2, 林笑1, 喻发全1(
)
收稿日期:
2023-08-09
修回日期:
2023-09-27
出版日期:
2023-10-25
发布日期:
2023-12-22
通讯作者:
喻发全
作者简介:
李晨亚(1991—),男,硕士研究生,2262659737@qq.com
基金资助:
Chenya LI1(), Jie LIU1, Jianzhi WANG1, Yanping LIU2, Xiao LIN1, Faquan YU1(
)
Received:
2023-08-09
Revised:
2023-09-27
Online:
2023-10-25
Published:
2023-12-22
Contact:
Faquan YU
摘要:
利用螺旋微通道反应器实现贝克曼重排制备己内酰胺。通过原位溶剂气化与二次流技术,克服了该高黏度反应体系在微反应器内流动阻力大、易造成局部热点、产能小等问题。探究了反应温度、溶剂气化、螺旋直径、管道内径、原料浓度、流量等因素对反应的转化率和选择性的影响。实验结果表明,在2 mm内径螺旋管道中,二氯乙烷为溶剂,酸肟摩尔比1.1前提下,预热温度80℃、重排温度90℃、环己酮肟溶液10%~20 %(质量分数),停留时间15 s、螺旋直径20 mm时,转化率可达100%,选择性达99%以上。同时实现了单管20.2 g/min的产能,按每年8000 h计算将达到9.7 t/a。本研究结果可为高通量、高效率的微通道反应器设计与开发提供理论指导,为高黏体系的微反应器提供解决方案。
中图分类号:
李晨亚, 刘捷, 王建芝, 刘艳萍, 林笑, 喻发全. 螺旋微通道反应器贝克曼重排制备己内酰胺[J]. 化工学报, 2023, 74(10): 4182-4190.
Chenya LI, Jie LIU, Jianzhi WANG, Yanping LIU, Xiao LIN, Faquan YU. Preparation of caprolactam by Beckmann rearrangement in spiral microchannel reactor[J]. CIESC Journal, 2023, 74(10): 4182-4190.
图3 预热温度(TW)和重排温度(TR)对环己酮肟转化率(C)和己内酰胺选择性(S)的影响[10%(质量分数)环己酮肟-DCE溶液,20 %(质量分数)发烟硫酸,Q = 25 ml/min,MA/O = 1.1,t = 15 s,D = 20 mm,d = 2 mm]
Fig.3 Effect of preheating temperature (TW) and rearrangement temperature (TR) on cyclohexanone oxime conversion (C) and caprolactam selectivity (S)
图5 不同沸点溶剂和停留时间对环己酮肟转化率(C)和己内酰胺选择性(S)的影响[10%(质量分数)环己酮肟, 20%(质量分数)发烟硫酸, Q = 25~75 ml/min, MA/O = 1.1, TW = 80℃, TR = 90℃, D = 20 mm, d = 2 mm]
Fig.5 Effects of solvents with different boiling points and retention time on cyclohexanone oxime conversion and caprolactam selectivity
图8 螺旋直径和停留时间对环己酮肟转化率和己内酰胺选择性的影响[10%(质量分数)环己酮肟-DCE溶液, 20%(质量分数)发烟硫酸, Q = 15~75 ml/min, MA/O = 1.1, TW = 80℃, TR = 90℃, d = 2 mm]
Fig.8 Effect of helix diameter and retention time on cyclohexanone oxime conversion and caprolactam selectivity
图9 管内径对环己酮肟转化率和己内酰胺选择性的影响[10%(质量分数)环己酮肟-DCE溶液,20%(质量分数)发烟硫酸,Q=25、56、100 ml/min, MA/O=1.1, TW=80℃, TR=90℃, t=20 s, D=20 mm]
Fig.9 Effect of tube inner diameter on cyclohexanone oxime conversion and caprolactam selectivity
图10 环己酮肟溶液浓度(ωCHO)对环己酮肟转化率、己内酰胺选择性和物料温度的影响[20%(质量分数)发烟硫酸,Q = 25 ml/min,MA/O = 1.1,TW = 80℃,TR = 90℃,t = 15 s,D = 20 mm,d = 2 mm]
Fig.10 Effect of mass fraction of cyclohexanone oxime solution(ωCHO) on cyclohexanone oxime conversion, caprolactam selectivity and material temperature
图11 环己酮肟溶液的流量对环己酮肟转化率和己内酰胺选择性的影响[20%(质量分数)环己酮肟-DCE溶液,20%(质量分数)发烟硫酸, MA/O = 1.1, TW = 80℃, TR = 90℃, t = 20 s, D = 20 mm, d = 2 mm]
Fig.11 Effect of cyclohexanone oxime solution flow rate on cyclohexanone oxime conversion and caprolactam selectivity
23 | Ronchin L, Vavasori A. On the mechanism of the organocatalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroacetic acid in aprotic solvent[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1/2): 22-30. |
24 | Su Y H, Chen G W, Zhao Y C, et al. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J]. AIChE Journal, 2009, 55(8): 1948-1958. |
25 | Qamareen A, Ansari M A, Alam S S, et al. Modulation of secondary flows in curved serpentine micromixers[J]. Chemical Engineering Communications, 2022, 209(5): 648-667. |
26 | Di Carlo D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21): 3038. |
27 | Zhao Q B, Yuan D, Zhang J, et al. A review of secondary flow in inertial microfluidics[J]. Micromachines, 2020, 11(5): 461. |
28 | Du C C, Zhang J S, Li L T, et al. Impurity formation in the Beckmann rearrangement of cyclohexanone oxime to yield ε-caprolactam[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14207-14213. |
29 | Wang X D, Wang Y M, Li F, et al. Scale-up of microreactor: effects of hydrodynamic diameter on liquid-liquid flow and mass transfer[J]. Chemical Engineering Science, 2020, 226: 115838. |
30 | Du C C, Zhang J S, Li L T, et al. A modified mixed-acid catalytic system for Beckmann rearrangement of cyclohexanone oxime[J]. AIChE Journal, 2019, 65(6): e16603. |
1 | Kumar R, Shah S, Paramita Das P, et al. An overview of caprolactam synthesis[J]. Catalysis Reviews, 2019, 61(4): 516-594. |
2 | Dahlhoff G, Niederer J P M, Hoelderich W F. ε-Caprolactam: new by-product free synthesis routes[J]. Catalysis Reviews, 2001, 43(4): 381-441. |
3 | 杨军, 冯美平. 己内酰胺生产技术进展及项目投资分析[J]. 合成纤维工业, 2013, 36(1): 50-53. |
Yang J, Feng M P. Caprolactam production technological prowess and project investment analysis[J]. China Synthetic Fiber Industry, 2013, 36(1): 50-53. | |
4 | 周云, 卢建国, 朱明乔. 环己酮肟贝克曼重排制己内酰胺绿色催化研究进展[J]. 合成纤维工业, 2015, 38(2): 51-56. |
Zhou Y, Lu J G, Zhu M Q. Research progress in green catalytic Beckmann rearrangement of cyclohexanone oxime into caprolactam[J]. China Synthetic Fiber Industry, 2015, 38(2): 51-56. | |
5 | Tinge J, Groothaert M, op het Veld H, et al. Caprolactam[M]//Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. |
6 | Zuidhof K T, de Croon M H J M, Schouten J C. Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam in microreactors[J]. AIChE Journal, 2009, 56(5): 1297-1304. |
7 | Horn P, Grosskinsky OA, Thoma R, et al. Continuous preparation of ε-caprolactam by Beckmann rearrangement: US4257950[P]. 1981-03-24. |
8 | 任文杰, 李识寒, 贾会敏. 发烟硫酸条件下环己酮肟贝克曼重排工艺进展[J]. 化学工业与工程技术, 2014(5): 32-35. |
Ren W J, Li S H, Jia H M. Technology progress of Beckmann rearrangement reaction of cyclohexanone oxime in the presence of oleum[J]. Journal of Chemical Industry & Engineering, 2014(5): 32-35. | |
9 | 张经纬, 周弋惟, 陈卓, 等. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
Zhang J W, Zhou Y W, Chen Z, et al. Advances in frontiers of organic synthesis in microreactor[J]. CIESC Journal, 2022, 73(8): 3472-3482. | |
10 | Wu Y X, Chen Z, Wang F J, et al. Efficient organocatalytic synthesis of styrene oxide from styrene and its kinetic study in a continuous-flow microreaction system[J]. Chemical Engineering Science, 2022, 247: 117045. |
11 | 王瀚琳, 王德强, 王凯, 等. 微反应器内苯甲醚连续合成[J]. 化工学报, 2019, 70(3): 922-928. |
Wang H L, Wang D Q, Wang K, et al. Continuous synthesis of anisole in microreactor system[J]. CIESC Journal, 2019, 70(3): 922-928. | |
12 | Chen Y Z, Zhao Y C, Han M, et al. Safe, efficient and selective synthesis of dinitro herbicides via a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent[J]. Green Chemistry, 2013, 15(1): 91-94. |
13 | 孙美玉, 庞秀江, 马秀明, 等. T形微反应器共沉淀法制备Mg-Al层状双金属氢氧化物及其粒径可控性[J]. 高等学校化学学报, 2013, 34(7): 1691-1696. |
Sun M Y, Pang X J, Ma X M, et al. Preparation and particle size controllability of Mg-Al layered double hydroxides via coprecipitation method using T-type microchannel reactor[J]. Chemical Journal of Chinese Universities, 2013, 34(7): 1691-1696. | |
14 | Mason Brian P, Price Kristin E, Steinbacher Jeremy L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews, 2007, 107(6): 2300-2318. |
15 | Kockmann N, Roberge D M. Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production[J]. Chemical Engineering & Technology, 2009, 32(11): 1682-1694. |
16 | Zhang J, Zhang S Q, Peng C, et al. Continuous synthesis of 2, 5-hexanedione through direct C—C coupling of acetone in a Hilbert fractal photo microreactor[J]. Reaction Chemistry & Engineering, 2020, 5(12): 2250-2259. |
17 | Bojang A A, Wu H S. Design, fundamental principles of fabrication and applications of microreactors[J]. Processes, 2020, 8(8): 891. |
18 | Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448. |
19 | Poe S L, Cummings M A, Haaf M P, et al. Solving the clogging problem: precipitate-forming reactions in flow[J]. Angewandte Chemie International Edition, 2006, 45(10): 1544-1548. |
20 | Zuidhof N T, de Croon M H J M, Schouten J C, et al. Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam in a microreactor[J]. Chemical Engineering & Technology, 2012, 35(7): 1257-1261. |
21 | Zhang J S, Wang K, Lu Y C, et al. Beckmann rearrangement in a microstructured chemical system for the preparation of ε-caprolactam[J]. AIChE Journal, 2012, 58(3): 925-931. |
22 | Zhang J S, Wang K, Lin X Y, et al. Intensification of fast exothermic reaction by gas agitation in a microchemical system[J]. AIChE Journal, 2014, 60(7): 2724-2730. |
[1] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[2] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[3] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[6] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[7] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[8] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[9] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[10] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[11] | 付家崴, 陈帅帅, 方凯伦, 蒋新. 微反应器共沉淀反应制备铜锰催化剂[J]. 化工学报, 2023, 74(2): 776-783. |
[12] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[13] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[14] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[15] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 605
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||