23 |
Ronchin L, Vavasori A. On the mechanism of the organocatalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroacetic acid in aprotic solvent[J]. Journal of Molecular Catalysis A: Chemical, 2009, 313(1/2): 22-30.
|
24 |
Su Y H, Chen G W, Zhao Y C, et al. Intensification of liquid-liquid two-phase mass transfer by gas agitation in a microchannel[J]. AIChE Journal, 2009, 55(8): 1948-1958.
|
25 |
Qamareen A, Ansari M A, Alam S S, et al. Modulation of secondary flows in curved serpentine micromixers[J]. Chemical Engineering Communications, 2022, 209(5): 648-667.
|
26 |
Di Carlo D. Inertial microfluidics[J]. Lab on a Chip, 2009, 9(21): 3038.
|
27 |
Zhao Q B, Yuan D, Zhang J, et al. A review of secondary flow in inertial microfluidics[J]. Micromachines, 2020, 11(5): 461.
|
28 |
Du C C, Zhang J S, Li L T, et al. Impurity formation in the Beckmann rearrangement of cyclohexanone oxime to yield ε-caprolactam[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14207-14213.
|
29 |
Wang X D, Wang Y M, Li F, et al. Scale-up of microreactor: effects of hydrodynamic diameter on liquid-liquid flow and mass transfer[J]. Chemical Engineering Science, 2020, 226: 115838.
|
30 |
Du C C, Zhang J S, Li L T, et al. A modified mixed-acid catalytic system for Beckmann rearrangement of cyclohexanone oxime[J]. AIChE Journal, 2019, 65(6): e16603.
|
1 |
Kumar R, Shah S, Paramita Das P, et al. An overview of caprolactam synthesis[J]. Catalysis Reviews, 2019, 61(4): 516-594.
|
2 |
Dahlhoff G, Niederer J P M, Hoelderich W F. ε-Caprolactam: new by-product free synthesis routes[J]. Catalysis Reviews, 2001, 43(4): 381-441.
|
3 |
杨军, 冯美平. 己内酰胺生产技术进展及项目投资分析[J]. 合成纤维工业, 2013, 36(1): 50-53.
|
|
Yang J, Feng M P. Caprolactam production technological prowess and project investment analysis[J]. China Synthetic Fiber Industry, 2013, 36(1): 50-53.
|
4 |
周云, 卢建国, 朱明乔. 环己酮肟贝克曼重排制己内酰胺绿色催化研究进展[J]. 合成纤维工业, 2015, 38(2): 51-56.
|
|
Zhou Y, Lu J G, Zhu M Q. Research progress in green catalytic Beckmann rearrangement of cyclohexanone oxime into caprolactam[J]. China Synthetic Fiber Industry, 2015, 38(2): 51-56.
|
5 |
Tinge J, Groothaert M, op het Veld H, et al. Caprolactam[M]//Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2018.
|
6 |
Zuidhof K T, de Croon M H J M, Schouten J C. Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam in microreactors[J]. AIChE Journal, 2009, 56(5): 1297-1304.
|
7 |
Horn P, Grosskinsky OA, Thoma R, et al. Continuous preparation of ε-caprolactam by Beckmann rearrangement: US4257950[P]. 1981-03-24.
|
8 |
任文杰, 李识寒, 贾会敏. 发烟硫酸条件下环己酮肟贝克曼重排工艺进展[J]. 化学工业与工程技术, 2014(5): 32-35.
|
|
Ren W J, Li S H, Jia H M. Technology progress of Beckmann rearrangement reaction of cyclohexanone oxime in the presence of oleum[J]. Journal of Chemical Industry & Engineering, 2014(5): 32-35.
|
9 |
张经纬, 周弋惟, 陈卓, 等. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482.
|
|
Zhang J W, Zhou Y W, Chen Z, et al. Advances in frontiers of organic synthesis in microreactor[J]. CIESC Journal, 2022, 73(8): 3472-3482.
|
10 |
Wu Y X, Chen Z, Wang F J, et al. Efficient organocatalytic synthesis of styrene oxide from styrene and its kinetic study in a continuous-flow microreaction system[J]. Chemical Engineering Science, 2022, 247: 117045.
|
11 |
王瀚琳, 王德强, 王凯, 等. 微反应器内苯甲醚连续合成[J]. 化工学报, 2019, 70(3): 922-928.
|
|
Wang H L, Wang D Q, Wang K, et al. Continuous synthesis of anisole in microreactor system[J]. CIESC Journal, 2019, 70(3): 922-928.
|
12 |
Chen Y Z, Zhao Y C, Han M, et al. Safe, efficient and selective synthesis of dinitro herbicides via a multifunctional continuous-flow microreactor: one-step dinitration with nitric acid as agent[J]. Green Chemistry, 2013, 15(1): 91-94.
|
13 |
孙美玉, 庞秀江, 马秀明, 等. T形微反应器共沉淀法制备Mg-Al层状双金属氢氧化物及其粒径可控性[J]. 高等学校化学学报, 2013, 34(7): 1691-1696.
|
|
Sun M Y, Pang X J, Ma X M, et al. Preparation and particle size controllability of Mg-Al layered double hydroxides via coprecipitation method using T-type microchannel reactor[J]. Chemical Journal of Chinese Universities, 2013, 34(7): 1691-1696.
|
14 |
Mason Brian P, Price Kristin E, Steinbacher Jeremy L, et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews, 2007, 107(6): 2300-2318.
|
15 |
Kockmann N, Roberge D M. Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production[J]. Chemical Engineering & Technology, 2009, 32(11): 1682-1694.
|
16 |
Zhang J, Zhang S Q, Peng C, et al. Continuous synthesis of 2, 5-hexanedione through direct C—C coupling of acetone in a Hilbert fractal photo microreactor[J]. Reaction Chemistry & Engineering, 2020, 5(12): 2250-2259.
|
17 |
Bojang A A, Wu H S. Design, fundamental principles of fabrication and applications of microreactors[J]. Processes, 2020, 8(8): 891.
|
18 |
Suryawanshi P L, Gumfekar S P, Bhanvase B A, et al. A review on microreactors: reactor fabrication, design, and cutting-edge applications[J]. Chemical Engineering Science, 2018, 189: 431-448.
|
19 |
Poe S L, Cummings M A, Haaf M P, et al. Solving the clogging problem: precipitate-forming reactions in flow[J]. Angewandte Chemie International Edition, 2006, 45(10): 1544-1548.
|
20 |
Zuidhof N T, de Croon M H J M, Schouten J C, et al. Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam in a microreactor[J]. Chemical Engineering & Technology, 2012, 35(7): 1257-1261.
|
21 |
Zhang J S, Wang K, Lu Y C, et al. Beckmann rearrangement in a microstructured chemical system for the preparation of ε-caprolactam[J]. AIChE Journal, 2012, 58(3): 925-931.
|
22 |
Zhang J S, Wang K, Lin X Y, et al. Intensification of fast exothermic reaction by gas agitation in a microchemical system[J]. AIChE Journal, 2014, 60(7): 2724-2730.
|