化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3665-3680.DOI: 10.11949/0438-1157.20230489
陆俊凤1,2(), 孙怀宇1, 王艳磊1,2(), 何宏艳1,2
收稿日期:
2023-05-16
修回日期:
2023-07-13
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
王艳磊
作者简介:
陆俊凤(1994—),女,硕士研究生,lujunfeng@ipe.ac.cn
基金资助:
Junfeng LU1,2(), Huaiyu SUN1, Yanlei WANG1,2(), Hongyan HE1,2
Received:
2023-05-16
Revised:
2023-07-13
Online:
2023-09-25
Published:
2023-11-20
Contact:
Yanlei WANG
摘要:
离子液体在电极界面处的结构及行为对其在超级电容器、固载催化剂等实际化工应用中有重要的影响。采用第一性原理计算结合理论分析研究了7种咪唑类离子液体在常见二维固体石墨烯、氮化硼、二硫化钼表面极化的分子机理及其对离子液体氢键的微观作用机制。结果表明,当离子液体在这三种二维表面吸附时会发生电荷转移和轨道相互作用,导致了显著的表面极化作用,且吸附能和电荷转移数值越大,表面极化作用越强。进一步分析了二维表面离子液体氢键的键长、键角、键序和键能,发现表面极化作用会显著削弱离子液体氢键。对于不同离子液体红外光谱的计算结果也验证了氢键被削弱的趋势。最后,通过SPSS软件对表面极化作用和离子液体氢键强度间的关系进行了定量解析,发现表面极化作用与氢键强度呈负相关关系。本文关于离子液体氢键的定量分析不仅有助于理解离子液体-固体表面作用的分子机理,而且可为离子液体在实际化工过程的应用提供理论支撑。
中图分类号:
陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680.
Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds[J]. CIESC Journal, 2023, 74(9): 3665-3680.
图1 (a)7种阴离子和[Emim]+阳离子的结构;(b)[Emim][SCN]在Gra表面的吸附模型示意图
Fig.1 (a) The structures of seven anions and the cation of [Emim]+;(b) The stable adsorption models of [Emim][SCN] on Gra
图A2 IL的AIM图[连接原子的线是电子密度分布的键程,小圆点代表键临界点(BCP),它们对应的能量列在IL的底部,最小能量值用灰色标记,其余小圆点代表环临界点(RCP)的位置]
Fig.A2 The theory of atoms in molecules (AIM) graphs of IL [The lines connecting the atoms are the bond paths in the electron density distribution, and the small dots represent the bond critical points (BCP), while their corresponding energy is listed at the bottom of IL and the minimal energy values are marked in gray, others small dots represent the positions of ring critical points (RCP)]
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
Gra | -0.03 | -0.03 | -0.03 | -0.02 | -0.01 | -0.02 | -0.01 |
CA | 0.77 | 0.78 | 0.80 | 0.83 | 0.83 | 0.85 | 0.86 |
AN | -0.73 | -0.74 | -0.78 | -0.81 | -0.82 | -0.83 | -0.85 |
IL | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.01 |
表A2 石墨烯,IL阳离子和阴离子的电荷(负值代表得电子)
Table A2 The charge of Gra, cation (CA), and anion (AN) in IL(The negative values represent gaining charge)
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
Gra | -0.03 | -0.03 | -0.03 | -0.02 | -0.01 | -0.02 | -0.01 |
CA | 0.77 | 0.78 | 0.80 | 0.83 | 0.83 | 0.85 | 0.86 |
AN | -0.73 | -0.74 | -0.78 | -0.81 | -0.82 | -0.83 | -0.85 |
IL | 0.03 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.01 |
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
BN | -0.06 | -0.06 | -0.06 | -0.05 | -0.05 | -0.06 | -0.05 |
CA | 0.78 | 0.79 | 0.82 | 0.85 | 0.85 | 0.87 | 0.88 |
AN | -0.72 | -0.73 | -0.76 | -0.80 | -0.80 | -0.81 | -0.82 |
IL | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | 0.05 |
表A3 BN,IL阳离子和阴离子的电荷(负值代表得电子)
Table A3 The charge of BN, cation (CA), and anion (AN) in IL(The negative values represent gaining charge)
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
BN | -0.06 | -0.06 | -0.06 | -0.05 | -0.05 | -0.06 | -0.05 |
CA | 0.78 | 0.79 | 0.82 | 0.85 | 0.85 | 0.87 | 0.88 |
AN | -0.72 | -0.73 | -0.76 | -0.80 | -0.80 | -0.81 | -0.82 |
IL | 0.06 | 0.06 | 0.06 | 0.05 | 0.05 | 0.06 | 0.05 |
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
MoS2 | -0.27 | -0.31 | -0.21 | -0.13 | -0.12 | -0.14 | -0.11 |
CA | 0.85 | 0.86 | 0.86 | 0.88 | 0.88 | 0.90 | 0.91 |
AN | -0.58 | -0.55 | -0.65 | -0.75 | -0.77 | -0.76 | -0.80 |
IL | 0.27 | 0.31 | 0.21 | 0.13 | 0.12 | 0.14 | 0.11 |
表A4 MoS2, IL阳离子和阴离子的电荷(负值代表得电子)
Table A4 The charge of MoS2, cation (CA), and anion (AN) in IL(The negative values represent gaining charge)
Item | Charge/e | ||||||
---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | |
MoS2 | -0.27 | -0.31 | -0.21 | -0.13 | -0.12 | -0.14 | -0.11 |
CA | 0.85 | 0.86 | 0.86 | 0.88 | 0.88 | 0.90 | 0.91 |
AN | -0.58 | -0.55 | -0.65 | -0.75 | -0.77 | -0.76 | -0.80 |
IL | 0.27 | 0.31 | 0.21 | 0.13 | 0.12 | 0.14 | 0.11 |
IL | Dca-sub/Å | Charge/e | |||
---|---|---|---|---|---|
Gra | CA | AN | IL | ||
[Emim][Cl] | 2.376 | -0.277 | 0.656 | -0.379 | 0.277 |
3.376 | -0.031 | 0.751 | -0.720 | 0.031 | |
4.376 | -0.023 | 0.773 | -0.749 | 0.023 | |
5.376 | -0.010 | 0.768 | -0.758 | 0.010 | |
[Emim][Br] | 2.248 | -0.188 | 0.679 | -0.491 | 0.188 |
3.047 | 0.001 | 0.725 | -0.726 | -0.001 | |
4.046 | -0.021 | 0.783 | -0.762 | 0.021 | |
5.045 | -0.011 | 0.784 | -0.773 | 0.011 | |
[Emim][SCN] | 2.311 | -0.198 | 0.678 | -0.481 | 0.198 |
3.311 | -0.020 | 0.787 | -0.766 | 0.020 | |
4.311 | -0.018 | 0.827 | -0.808 | 0.018 | |
5.311 | -0.007 | 0.828 | -0.821 | 0.007 | |
[Emim][DCA] | 2.332 | -0.026 | 0.702 | -0.676 | 0.026 |
3.530 | -0.018 | 0.829 | -0.811 | 0.018 | |
4.030 | -0.017 | 0.847 | -0.829 | 0.017 | |
5.030 | -0.007 | 0.846 | -0.838 | 0.007 | |
[Emim][B(H2CN2)] | 2.310 | 0.057 | 0.707 | -0.764 | -0.057 |
2.810 | 0.057 | 0.746 | -0.803 | -0.057 | |
3.810 | -0.014 | 0.839 | -0.825 | 0.014 | |
4.810 | -0.009 | 0.852 | -0.843 | 0.009 | |
[Emim][TCM] | 2.365 | 0.019 | -0.727 | 0.708 | -0.019 |
3.165 | -0.012 | -0.808 | 0.819 | 0.012 | |
4.165 | -0.016 | -0.854 | 0.870 | 0.016 | |
5.165 | -0.006 | -0.864 | 0.870 | 0.006 | |
[Emim][TCB] | 2.152 | -0.065 | 0.744 | -0.680 | 0.065 |
2.652 | 0.070 | 0.747 | -0.817 | -0.070 | |
3.952 | -0.016 | 0.873 | -0.857 | 0.016 | |
4.952 | -0.008 | 0.885 | -0.877 | 0.008 |
表A5 不同Dca-sub时Gra,阳离子,阴离子和IL的电荷数(负值代表得电子)
Table A5 The charge of Gra, cation (CA), anion (AN), and IL under different Dca-sub(The negative values represent gaining charge)
IL | Dca-sub/Å | Charge/e | |||
---|---|---|---|---|---|
Gra | CA | AN | IL | ||
[Emim][Cl] | 2.376 | -0.277 | 0.656 | -0.379 | 0.277 |
3.376 | -0.031 | 0.751 | -0.720 | 0.031 | |
4.376 | -0.023 | 0.773 | -0.749 | 0.023 | |
5.376 | -0.010 | 0.768 | -0.758 | 0.010 | |
[Emim][Br] | 2.248 | -0.188 | 0.679 | -0.491 | 0.188 |
3.047 | 0.001 | 0.725 | -0.726 | -0.001 | |
4.046 | -0.021 | 0.783 | -0.762 | 0.021 | |
5.045 | -0.011 | 0.784 | -0.773 | 0.011 | |
[Emim][SCN] | 2.311 | -0.198 | 0.678 | -0.481 | 0.198 |
3.311 | -0.020 | 0.787 | -0.766 | 0.020 | |
4.311 | -0.018 | 0.827 | -0.808 | 0.018 | |
5.311 | -0.007 | 0.828 | -0.821 | 0.007 | |
[Emim][DCA] | 2.332 | -0.026 | 0.702 | -0.676 | 0.026 |
3.530 | -0.018 | 0.829 | -0.811 | 0.018 | |
4.030 | -0.017 | 0.847 | -0.829 | 0.017 | |
5.030 | -0.007 | 0.846 | -0.838 | 0.007 | |
[Emim][B(H2CN2)] | 2.310 | 0.057 | 0.707 | -0.764 | -0.057 |
2.810 | 0.057 | 0.746 | -0.803 | -0.057 | |
3.810 | -0.014 | 0.839 | -0.825 | 0.014 | |
4.810 | -0.009 | 0.852 | -0.843 | 0.009 | |
[Emim][TCM] | 2.365 | 0.019 | -0.727 | 0.708 | -0.019 |
3.165 | -0.012 | -0.808 | 0.819 | 0.012 | |
4.165 | -0.016 | -0.854 | 0.870 | 0.016 | |
5.165 | -0.006 | -0.864 | 0.870 | 0.006 | |
[Emim][TCB] | 2.152 | -0.065 | 0.744 | -0.680 | 0.065 |
2.652 | 0.070 | 0.747 | -0.817 | -0.070 | |
3.952 | -0.016 | 0.873 | -0.857 | 0.016 | |
4.952 | -0.008 | 0.885 | -0.877 | 0.008 |
图A4 ILs在距表面不同距离下的AIM分析(E的单位是kcal/mol;Dca-sub1~Dca-sub4具体数值列于表A5;连接原子的线是电子密度分布的键程,编号圆点代表键临界点,它们对应的能量列在IL的底部,其余小圆点代表环临界点的位置)
Fig.A4 The AIM analysis of ILs at different distances from the surface [The unit of E is kcal/mol; The specific values of Dca-sub1 to Dca-sub4 are listed in Table A5; The lines connecting the atoms are the bond paths in the electron density distribution, and the numbered dots represent the bond critical points (BCPs), while their corresponding energies are listed at the bottom of IL, others small dots represent the positions of ring critical points (RCPs)]
Item | Charge/e | |||||||
---|---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | ||
CA | 0.76 | 0.77 | 0.81 | 0.84 | 0.84 | 0.87 | 0.88 | |
AN | -0.76 | -0.77 | -0.81 | -0.84 | -0.84 | -0.87 | -0.88 |
表A1 孤立IL中阳离子和阴离子的电荷(负值代表得电子)
Table A1 The charge of the cation (CA) and anion (AN) in isolated IL(The negative values represent gaining charge)
Item | Charge/e | |||||||
---|---|---|---|---|---|---|---|---|
[Emim][Cl] | [Emim][Br] | [Emim][SCN] | [Emim][DCA] | [Emim][B(H2CN2)] | [Emim][TCM] | [Emim][TCB] | ||
CA | 0.76 | 0.77 | 0.81 | 0.84 | 0.84 | 0.87 | 0.88 | |
AN | -0.76 | -0.77 | -0.81 | -0.84 | -0.84 | -0.87 | -0.88 |
1 | Dong K, Liu X M, Dong H F, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695. |
2 | Rogers R D, Seddon K R. Ionic liquids: solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
3 | Wang Y L, He H Y, Wang C L, et al. Insights into ionic liquids: from Z-bonds to quasi-liquids[J]. JACS Au, 2022, 2(3): 543-561. |
4 | Qin J Y, Wang M, Wang Y L, et al. Understanding electric field-dependent structure variation of functional ionic liquids at the electrode interface[J]. ChemElectroChem, 2021, 8(9): 1588-1595. |
5 | MacFarlane D R, Tachikawa N, Forsyth M, et al. Energy applications of ionic liquids[J]. Energy & Environmental Science, 2014, 7(1): 232-250. |
6 | Zakrewsky M, Lovejoy K S, Kern T L, et al. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(37): 13313-13318. |
7 | Wang C L, Wang Y L, Liu J, et al. Entropy driving highly selective CO2 separation in nanoconfined ionic liquids[J]. Chemical Engineering Journal, 2022, 440: 135918. |
8 | Wang J Q, Cheng W G, Sun J, et al. Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids[J]. RSC Advances, 2014, 4(5): 2360-2367. |
9 | Wang L, Jin X F, Li P, et al. Hydroxyl-functionalized ionic liquid promoted CO2 fixation according to electrostatic attraction and hydrogen bonding interaction[J]. Industrial & Engineering Chemistry Research, 2014, 53(20): 8426-8435. |
10 | 王琛璐, 王艳磊, 赵秋, 等. 低维纳米受限离子液体的研究进展[J]. 化工学报, 2021, 72(1): 366-383. |
Wang C L, Wang Y L, Zhao Q, et al. Research progress of low-dimensional nanoconfined ionic liquids[J]. CIESC Journal, 2021, 72(1): 366-383. | |
11 | Niemann T, Li H A, Warr G G, et al. Influence of hydrogen bonding between ions of like charge on the ionic liquid interfacial structure at a mica surface[J]. The Journal of Physical Chemistry Letters, 2019, 10(23): 7368-7373. |
12 | Fumino K, Ludwig R. Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between Coulomb forces and hydrogen bonding[J]. Journal of Molecular Liquids, 2014, 192: 94-102. |
13 | Li H A, Niemann T, Ludwig R, et al. Effect of hydrogen bonding between ions of like charge on the boundary layer friction of hydroxy-functionalized ionic liquids[J]. The Journal of Physical Chemistry Letters, 2020, 11(10): 3905-3910. |
14 | Wang C L, Wang Y L, Gan Z D, et al. Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO2 adsorption selectivity[J]. Chemical Science, 2021, 12(47): 15503-15510. |
15 | Gan Z D, Wang Y L, Wang M, et al. Ionophobic nanopores enhancing the capacitance and charging dynamics in supercapacitors with ionic liquids[J]. Journal of Materials Chemistry A, 2021, 9(29): 15985-15992. |
16 | Zhao W C, Xue Z M, Wang J F, et al. Large-scale, highly efficient, and green liquid-exfoliation of black phosphorus in ionic liquids[J]. ACS Applied Materials & Interfaces, 2015, 7(50): 27608-27612. |
17 | Bari R, Tamas G, Irin F, et al. Direct exfoliation of graphene in ionic liquids with aromatic groups[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 463: 63-69. |
18 | Shakourian-Fard M, Kamath G, Jamshidi Z. Trends in physisorption of ionic liquids on boron-nitride sheets[J]. The Journal of Physical Chemistry C, 2014, 118(45): 26003-26016. |
19 | Lu Y X, Xu Y M, Lu L, et al. Interfacial interactions and structures of protic ionic liquids on a graphite surface: a first-principles study and comparison with aprotic ionic liquids[J]. Physical Chemistry Chemical Physics, 2021, 23(34): 18338-18348. |
20 | García G, Atilhan M, Aparicio S. In silico rational design of ionic liquids for the exfoliation and dispersion of boron nitride nanosheets[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 1212-1224. |
21 | Shakourian-Fard M, Maryamdokht Taimoory S, Semeniuchenko V, et al. The effect of ionic liquid adsorption on the electronic and optical properties of fluorographene nanosheets[J]. Journal of Molecular Liquids, 2018, 268: 206-214. |
22 | Zhu L, Fu A P. The influence of ionic liquids adsorption on the electronic and optical properties of phosphorene and arsenene with different phases: a computational study[J]. Molecules, 2022, 27(8): 2518. |
23 | Shakourian-Fard M, Jamshidi Z, Bayat A, et al. Meta-hybrid density functional theory study of adsorption of imidazolium- and ammonium-based ionic liquids on graphene sheet[J]. The Journal of Physical Chemistry C, 2015, 119(13): 7095-7108. |
24 | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
25 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
26 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
27 | Blöchl P E. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. |
28 | Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104. |
29 | Manz T A, Limas N G. Introducing DDEC6 atomic population analysis(part 1): Charge partitioning theory and methodology[J]. RSC Advances, 2016, 6(53): 47771-47801. |
30 | Limas N G, Manz T A. Introducing DDEC6 atomic population analysis(part 2): Computed results for a wide range of periodic and nonperiodic materials[J]. RSC Advances, 2016, 6(51): 45727-45747. |
31 | Giannozzi P, Baroni S. Vibrational and dielectric properties of C60 from density-functional perturbation theory[J]. The Journal of Chemical Physics, 1994, 100(11): 8537-8539. |
32 | Görne A, George J, van Leusen J, et al. Synthesis, crystal structure, polymorphism, and magnetism of Eu(CN3H4)2 and first evidence of EuC(NH)3 [J]. Inorganics, 2017, 5(1): 10. |
33 | Lu T A, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
34 | Emamian S, Lu T, Kruse H, et al. Exploring nature and predicting strength of hydrogen bonds: a correlation analysis between atoms-in-molecules descriptors, binding energies, and energy components of symmetry-adapted perturbation theory[J]. Journal of Computational Chemistry, 2019, 40(32): 2868-2881. |
35 | Dong K, Zhang S J, Wang J J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions[J]. Chemical Communications, 2016, 52(41): 6744-6764. |
36 | Buchner F, Forster-Tonigold K, Bozorgchenani M, et al. Interaction of a self-assembled ionic liquid layer with graphite(0001): a combined experimental and theoretical study[J]. The Journal of Physical Chemistry Letters, 2016, 7(2): 226-233. |
37 | Ruuska H, Pakkanen T A. Ab initio study of interlayer interaction of graphite: benzene-coronene and coronene dimer two-layer models[J]. The Journal of Physical Chemistry B, 2001, 105(39): 9541-9547. |
38 | Dong K, Zhang S J, Wang Q. A new class of ion-ion interaction: z-bond[J]. Science China Chemistry, 2015, 58(3): 495-500. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[8] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[9] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[12] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[15] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 508
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||