化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3554-3563.DOI: 10.11949/0438-1157.20230347
傅予(), 刘兴翀(), 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗
收稿日期:
2023-04-07
修回日期:
2023-07-22
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
刘兴翀
作者简介:
傅予(1997—),男,硕士研究生,2429619769@qq.com
基金资助:
Yu FU(), Xingchong LIU(), Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG
Received:
2023-04-07
Revised:
2023-07-22
Online:
2023-08-25
Published:
2023-10-18
Contact:
Xingchong LIU
摘要:
一般来说,钙钛矿表面的陷阱和晶界(GBs)对钙钛矿太阳能电池(PSCs)的性能和长期稳定性非常不利。本研究用一种含有F原子的三氟乙胺盐酸盐(F3EACl)作为改性层,沉积在钙钛矿(PVSK)层和空穴传输层(HTL)之间,以钝化钙钛矿表面上的陷阱和GBs。通过对F3EACl修饰后钙钛矿薄膜结晶性、钙钛矿薄膜形貌、钙钛矿薄膜光物理性质以及电池光伏性能的研究发现,F3EACl与钙钛矿形成的N—H…F氢键作用以及F3EA+和钙钛矿中的I-之间的相互作用能够钝化钙钛矿表面的缺陷,从而提高器件的性能和稳定性。此外,F3EACl改性层还可以调节钙钛矿层与HTL之间的能级分布,进而提高空穴的提取效率。结果显示,F3EACl修饰后的PSCs的能量转换效率(PCE)从19.15%提高到22.45%。这表明F3EACl是一种用来钝化钙钛矿陷阱比较好的材料,可提升PSCs的性能和稳定性。
中图分类号:
傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563.
Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells[J]. CIESC Journal, 2023, 74(8): 3554-3563.
图1 控制组和修饰组薄膜的XRD谱图及1 mg/ml F3EACl修饰后钙钛矿薄膜的EDS图
Fig.1 XRD patterns of control films and modified films and EDS of 1 mg/ml F3EACl-modified perovskite films
Device | A1 | A2 | τ1/ns | τ2/ns | τave/ns |
---|---|---|---|---|---|
control | 0.214 | 0.786 | 69.28 | 764.25 | 764.34 |
modified | 0.208 | 0.792 | 22.03 | 197.03 | 192.03 |
表1 详细的控制组器件和修饰组器件的TRPL参数
Table 1 The detailed TRPL parameters of the control device and modified device
Device | A1 | A2 | τ1/ns | τ2/ns | τave/ns |
---|---|---|---|---|---|
control | 0.214 | 0.786 | 69.28 | 764.25 | 764.34 |
modified | 0.208 | 0.792 | 22.03 | 197.03 | 192.03 |
Sample | Ecutoff /eV | Eonset /eV | WF/eV | VBM/eV | Eg/eV | CBM/eV |
---|---|---|---|---|---|---|
control | 16.99 | 1.44 | 4.23 | -5.67 | 1.57 | -4.10 |
modified | 17.06 | 1.48 | 4.16 | -5.64 | 1.58 | -4.06 |
表2 控制组和F3EACl修饰钙钛矿后的紫外光电子能谱参数
Table 2 The calculated parameters of UPS for control and F3EACl-modified perovskite layer
Sample | Ecutoff /eV | Eonset /eV | WF/eV | VBM/eV | Eg/eV | CBM/eV |
---|---|---|---|---|---|---|
control | 16.99 | 1.44 | 4.23 | -5.67 | 1.57 | -4.10 |
modified | 17.06 | 1.48 | 4.16 | -5.64 | 1.58 | -4.06 |
1 | Liu C, Liu S, Wang Y F, et al. Improving the performance of perovskite solar cells via a novel additive of N, 1‐fluoroformamidinium iodide with electron-withdrawing fluorine group[J]. Advanced Functional Materials, 2021, 31(18): 2010603. |
2 | Ti J J, Zhu J W, He B L, et al. A “double-sided tape” modifier bridging the TiO2/perovskite buried interface for efficient and stable all-inorganic perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(12): 6649-6661. |
3 | Gao Y B, Wu Y J, Liu Y, et al. Interface and grain boundary passivation for efficient and stable perovskite solar cells: the effect of terminal groups in hydrophobic fused benzothiadiazole-based organic semiconductors[J]. Nanoscale Horizons, 2020, 5(12): 1574-1585. |
4 | Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. |
5 | Kim M, Jeong J, Lu H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306. |
6 | Wang C Y, Wu J H, Wang S B, et al. Alkali metal fluoride-modified tin oxide for n-i-p planar perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50083-50092. |
7 | Yang A S, Huang R, Jiang Z N, et al. Recyclable solid-solid phase change materials with excellent reprocessing properties based on dynamic disulfide bonds[J]. ACS Applied Polymer Materials, 2023, 5(2): 1499-1508. |
8 | He M S, Liang J H, Zhang Z F, et al. Compositional optimization of a 2D-3D heterojunction interface for 22.6% efficient and stable planar perovskite solar cells[J]. Journal of Materials Chemistry A, 2020, 8(48): 25831-25841. |
9 | Zhou Q, Cai C S, Xiong Q, et al. Surface polarity regulation by relieving Fermi-level pinning with naphthalocyanine tetraimides toward efficient perovskite solar cells with improved photostability[J]. Advanced Energy Materials, 2022, 12(27): 2201243. |
10 | Fahim M, Firdous I, Tsang S-W, et al. Engineering intrinsic flexibility in polycrystalline perovskite film by grain boundary stitching for high mechanical endurance[J]. Nano Energy, 2022, 96: 107058. |
11 | Ma Z W, Yu R N, Xu Z Y, et al. Crosslinkable and chelatable organic ligand enables interfaces and grains collaborative passivation for efficient and stable perovskite solar cells[J]. Small, 2022, 18(22): 2201820. |
12 | Li D X, Xing Z, Huang L, et al. Spontaneous formation of upper gradient 2D structure for efficient and stable quasi‐2D perovskites[J]. Advanced Materials, 2021, 33(34): 2101823. |
13 | Su H, Zhang J, Hu Y J, et al. Fluoroethylamine engineering for effective passivation to attain 23.4% efficiency perovskite solar cells with superior stability[J]. Advanced Energy Materials, 2021, 11(30): 2101454. |
14 | Shi L X, Sun X G, Yuan H Y, et al. Para-halogenated triphenyltriazine induced surface passivation toward efficient and stable perovskite solar cells[J]. Applied Surface Science, 2022, 590: 153051. |
15 | Liu Y L, Xiang W C, Mou S Q, et al. Synergetic surface defect passivation towards efficient and stable inorganic perovskite solar cells[J]. Chemical Engineering Journal, 2022, 447: 137515. |
16 | Luo M, Zong X P, Zhao M, et al. Synergistic effect of amide and fluorine of polymers assist stable inverted perovskite solar cells with fill factor >83%[J]. Chemical Engineering Journal, 2022, 442: 136136. |
17 | Lee S W, Bae S, Kim D, et al. Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells[J]. Advanced Materials, 2020, 32(51): 2002202. |
18 | Xu C, Zuo L J, Hang P J, et al. Synergistic effects of bithiophene ammonium salt for high-performance perovskite solar cells[J]. Journal of Materials Chemistry A, 2022, 10(18): 9971-9980. |
19 | Zhao Y, Zhang X, Han X F, et al. Tuning the reactivity of PbI2 film via monolayer Ti3C2T x MXene for two-step-processed CH3NH3PbI3 solar cells[J]. Chemical Engineering Journal, 2021, 417: 127912. |
20 | Chen W, Zhou Y C, Chen G C, et al. Alkali chlorides for the suppression of the interfacial recombination in inverted planar perovskite solar cells[J]. Advanced Energy Materials, 2019, 9(19): 1803872. |
21 | Cai W X, Wang Y D, Shang W Z, et al. Lewis base governing superfacial proton behavior of hybrid perovskite: basicity dependent passivation strategy[J]. Chemical Engineering Journal, 2022, 446: 137033. |
22 | Cao X B, Hao L, Liu Z J, et al. All green solvent engineering of organic-inorganic hybrid perovskite layer for high-performance solar cells[J]. Chemical Engineering Journal, 2022, 437: 135458. |
23 | Zuo X J, He Y Y, Ji H Y, et al. In-situ photoisomerization of azobenzene to inhibit ion-migration for stable high-efficiency perovskite solar cells[J]. Journal of Energy Chemistry, 2022, 73: 556-564. |
24 | Wang S R, Yan L, Zhu W K, et al. Suppressing the formation of tin vacancy yields efficient lead-free perovskite solar cells[J]. Nano Energy, 2022, 99: 107416. |
25 | Ren Y T, He L F, Zhang B, et al. A trifluorothymine interlayer reduces the degradation of perovskite and controls the cracks of hole transport layers[J]. Journal of Materials Chemistry A, 2022, 10(30): 16080-16086. |
26 | Wu T, Zhao R J, Qiu J M, et al. Enhancing the hot carrier injection of perovskite solar cells by incorporating a molecular dipole interlayer[J]. Advanced Functional Materials, 2022, 32(38): 2204450. |
27 | Ma Z, Zhou W Y, Huang D J, et al. Nicotinamide as additive for microcrystalline and defect passivated perovskite solar cells with 21.7% efficiency[J]. ACS Applied Materials & Interfaces, 2020, 12(47): 52500-52508. |
28 | Huang H, Liu B, Wang D, et al. Different mechanisms of improving CH3NH3PbI3 perovskite solar cells brought by fluorinated or nitrogen doped graphdiyne[J]. Nano Research, 2022, 15: 573-580. |
29 | Obrero‐Perez J M, Contreras‐Bernal L, Nuñez‐Galvez F, et al. Ultrathin plasma polymer passivation of perovskite solar cells for improved stability and reproducibility[J]. Advanced Energy Materials, 2022, 12(32): 2200812. |
30 | de la Peña O’Shea V A, Costa R D. Recent advances towards sustainable materials and processes for energy conversion and storage[J]. Advanced Energy Materials, 2021, 11(43): 2102874. |
31 | Yao Y G, Cheng C D, Zhang C Y, et al. Organic hole‐transport layers for efficient, stable, and scalable inverted perovskite solar cells[J]. Advanced Materials, 2022, 34(44): 2203794. |
32 | Gong X L, Li H M, Zhou R N, et al. Strong electron acceptor of a fluorine-containing group leads to high performance of perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2021, 13(34): 41149-41158. |
33 | Sun Y P, Zhang J K, Yu H Z, et al. Several triazine-based small molecules assisted in the preparation of high-performance and stable perovskite solar cells by trap passivation and heterojunction engineering[J]. ACS Applied Materials & Interfaces, 2022, 14(5): 6625-6637. |
34 | Lan Y J, Wang Y, Lai Y, et al. Thermally driven self-healing efficient flexible perovskite solar cells[J]. Nano Energy, 2022, 100: 107523. |
35 | Møller C K. Crystal structure and photoconductivity of caesium plumbohalides[J]. Nature, 1958, 182: 1436-1436. |
36 | Akanda M A M, Shin D. A synthesis parameter of molten salt nanofluids for solar thermal energy storage applications[J]. Journal of Energy Storage, 2023, 60: 106608. |
37 | Ning L, Ingabire P B, Gu N X, et al. Fabrication of stable perovskite solar cells with efficiency over 20% in open air using in situ polymerized bi-functional additives[J]. Journal of Materials Chemistry A, 2022, 10(7): 3688-3697. |
38 | Jiang X Q, Zhang J F, Liu X T, et al. Deeper insight into the role of organic ammonium cations in reducing surface defects of the perovskite film[J]. Angewandte Chemie, 2022, 134(12): e202115663. |
39 | Ma H R, Wang M H, Wang Y D, et al. Asymmetric organic diammonium salt buried in SnO2 layer enables fast carrier transfer and interfacial defects passivation for efficient perovskite solar cells[J]. Chemical Engineering Journal, 2022, 442: 136291. |
40 | Hu X D, Zhu C, Zhang W J, et al. Strain release of formamidinium-cesium perovskite with imprint-assisted organic ammonium halide compensation for efficient and stable solar cells[J]. Nano Energy, 2022, 101: 107594. |
41 | Shu H Y, Xia J X, Yang H, et al. Self-assembled hydrophobic molecule-based surface modification: a strategy to improve efficiency and stability of perovskite solar cells[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(29): 10859-10869. |
42 | Li S F, He B Z, Xu J, et al. Highly efficient inverted perovskite solar cells incorporating P3CT-Rb as a hole transport layer to achieve a large open circuit voltage of 1.144 V[J]. Nanoscale, 2020, 12(6): 3686-3691. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[4] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[7] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[8] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[9] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[10] | 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804. |
[11] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[12] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[13] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[14] | 程伟江, 汪何琦, 高翔, 李娜, 马赛男. 锂离子电池硅基负极电解液成膜添加剂的研究进展[J]. 化工学报, 2023, 74(2): 571-584. |
[15] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 627
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||