1 |
Wang Y, Chen K S, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[J]. Applied Energy, 2011, 88(4): 981-1007.
|
2 |
Yang Y G, Zhou X Y, Li B, et al. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: material and structure designs of microporous layer[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4259-4282.
|
3 |
Wang Y L, Wang X A, Fan Y Z, et al. Numerical investigation of tapered flow field configurations for enhanced polymer electrolyte membrane fuel cell performance[J]. Applied Energy, 2022, 306: 118021.
|
4 |
Wang Y, Wang X D, Qin Y Z, et al. Three-dimensional numerical study of a cathode gas diffusion layer with a through/in plane synergetic gradient porosity distribution for PEM fuel cells[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122661.
|
5 |
魏琳, 廖梓豪, 蒋方明. PEMFC冷却剂循环条件下冷启动数值模拟[J]. 化工学报, 2019, 70(S2): 146-154.
|
|
Wei L, Liao Z H, Jiang F M. Numerical study on cold start of PEMFC with coolant circulation[J]. CIESC Journal, 2019, 70(S2): 146-154.
|
6 |
宇高义郎, 许竞莹, 王国卓, 等. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
|
|
Utaka Y, Xu J Y, Wang G Z, et al. Study on freezing characteristics of water in gas diffusion layer of proton exchange membrane fuel cells[J]. CIESC Journal, 2021, 72(4): 2276-2282.
|
7 |
Wang G Z, Utaka Y, Wang S X. Planar-distributed wettability of microporous layer of polymer electrolyte fuel cell to improve cold start performance[J]. Journal of Power Sources, 2019, 437: 226930.
|
8 |
Yan Q G, Toghiani H, Lee Y W, et al. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components[J]. Journal of Power Sources, 2006, 160(2): 1242-1250.
|
9 |
Ozden A, Shahgaldi S, Zhao J, et al. Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: morphology and microstructure effects[J]. International Journal of Hydrogen Energy, 2020, 45(5): 3618-3631.
|
10 |
Cho E, Ko J J, Ha H Y, et al. Characteristics of the PEMFC repetitively brought to temperatures below 0℃[J]. Journal of The Electrochemical Society, 2003, 150(12): A1667.
|
11 |
McDonald R C, Mittelsteadt C K, Thompson E L. Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies[J]. Fuel Cells, 2004, 4(3): 208-213.
|
12 |
Oszcipok M, Riemann D, Kronenwett U, et al. Statistic analysis of operational influences on the cold start behaviour of PEM fuel cells[J]. Journal of Power Sources, 2005, 145(2): 407-415.
|
13 |
Amamou A A, Kelouwani S, Boulon L, et al. A comprehensive review of solutions and strategies for cold start of automotive proton exchange membrane fuel cells[J]. IEEE Access, 2016, 4: 4989-5002.
|
14 |
Wan Z M, Chang H W, Shu S M, et al. A review on cold start of proton exchange membrane fuel cells[J]. Energies, 2014, 7(5): 3179-3203.
|
15 |
Montaner Ríos G, Schirmer J, Gentner C, et al. Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system[J]. Applied Energy, 2020, 279: 115813.
|
16 |
Li L J, Wang S X, Yue L K, et al. Cold-start method for proton-exchange membrane fuel cells based on locally heating the cathode[J]. Applied Energy, 2019, 254: 113716.
|
17 |
Luo M Z, Zhang J, Zhang C Z, et al. Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied Thermal Engineering, 2022, 201: 117816.
|
18 |
Jiang F M, Wang C Y, Chen K S. Current ramping: a strategy for rapid start-up of PEMFCs from subfreezing environment[J]. Journal of the Electrochemical Society, 2010, 157(3): B342-B347.
|
19 |
Jiao K, Li X G. Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(19): 8171-8184.
|
20 |
Guo Q, Luo Y Q, Jiao K. Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(2): 1004-1015.
|
21 |
Nicotera I, Coppola L, Rossi C O, et al. NMR investigation of the dynamics of confined water in Nafion-based electrolyte membranes at subfreezing temperatures[J]. The Journal of Physical Chemistry B, 2009, 113(42): 13935-13941.
|
22 |
Ko J, Kim W G, Lim Y D, et al. Improving the cold-start capability of polymer electrolyte fuel cells (PEFCs) by using a dual-function micro-porous layer (MPL): numerical simulations[J]. International Journal of Hydrogen Energy, 2013, 38(1): 652-659.
|
23 |
Zhang S S, Yu H M, Zhu H, et al. Effects of freeze/thaw cycles and gas purging method on polymer electrolyte membrane fuel cells[J]. Chinese Journal of Chemical Engineering, 2006, 14(6): 802-805.
|
24 |
Hou J B, Yu H M, Zhang S S, et al. Analysis of PEMFC freeze degradation at -20℃ after gas purging[J]. Journal of Power Sources, 2006, 162(1): 513-520.
|
25 |
Sinha P K, Wang C Y. Two-phase modeling of gas purge in a polymer electrolyte fuel cell[J]. Journal of Power Sources, 2008, 183(2): 609-618.
|
26 |
Kim S I, Lee N W, Kim Y S, et al. Effective purge method with addition of hydrogen on the cathode side for cold start in PEM fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11357-11369.
|
27 |
Lee S Y, Kim S U, Kim H J, et al. Water removal characteristics of proton exchange membrane fuel cells using a dry gas purging method[J]. Journal of Power Sources, 2008, 180(2): 784-790.
|
28 |
Sinha P K, Wang C Y. Gas purge in a polymer electrolyte fuel cell[J]. Journal of the Electrochemical Society, 2007, 154(11): B1158-B1166.
|
29 |
Pan H, Xu L F, Cheng S L, et al. Control-oriented modeling of gas purging process on the cathode of polymer electrolyte membrane fuel cell during shutting down[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18584-18594.
|
30 |
Tajiri K, Wang C Y, Tabuchi Y. Water removal from a PEFC during gas purge[J]. Electrochimica Acta, 2008, 53(22): 6337-6343.
|