化工学报 ›› 2023, Vol. 74 ›› Issue (3): 981-994.DOI: 10.11949/0438-1157.20221489
陈瑞哲1,2,3(), 程磊磊1,2,3, 顾菁2,3, 袁浩然1,2,3(), 陈勇1,2,3
收稿日期:
2022-11-15
修回日期:
2023-02-11
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
袁浩然
作者简介:
陈瑞哲(1999—)男,硕士研究生,crz4212@163.com
基金资助:
Ruizhe CHEN1,2,3(), Leilei CHENG1,2,3, Jing GU2,3, Haoran YUAN1,2,3(), Yong CHEN1,2,3
Received:
2022-11-15
Revised:
2023-02-11
Online:
2023-03-05
Published:
2023-04-19
Contact:
Haoran YUAN
摘要:
纤维增强树脂复合材料(fiber-reinforced polymer composites,FRPC)具有强度高、易加工、成本低等优异性能,成为风机叶片、线路板等典型工业产品的首选结构材料。随着FRPC产量逐年增加以及工业产品退役期的来临,废弃复合材料的累积将导致严重的环境污染和能源资源浪费,亟需研发高效清洁回收技术。化学回收技术不仅能够回收高质纤维材料,而且可实现树脂定向转化为燃料和有机化学品。本文在分析复合废材组成特性以及化学回收技术的基础上,对再生产品应用、技术经济性以及环境效益进行了评价。进一步提出基于有机树脂官能团特性,在温和条件下定向解聚升级循环制备精细化学品的同时,实现纤维材料无损再生利用。
中图分类号:
陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994.
Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites[J]. CIESC Journal, 2023, 74(3): 981-994.
回收技术 | 优势 | 劣势 |
---|---|---|
填埋处理 | 过程简单,处理成本低 | 危害环境,浪费废弃物资源 |
能量回收 | 不限制材料种类 | 碳排放量大,无法回收高性能纤维 |
物理回收 | 可回收得到短纤维制品,适合大规模生产应用 | 回收产物价值较低,对可回收的废弃物种类有限制 |
化学回收 | 有效回收树脂并较大程度地保持回收纤维的性能, 对环境危害小 | 处理程序复杂,成本较高,产物较为复杂,缺乏低耗高效的 全资源化回收技术 |
表1 各类FRPC回收技术
Table 1 Various recycling technologies of FRPC
回收技术 | 优势 | 劣势 |
---|---|---|
填埋处理 | 过程简单,处理成本低 | 危害环境,浪费废弃物资源 |
能量回收 | 不限制材料种类 | 碳排放量大,无法回收高性能纤维 |
物理回收 | 可回收得到短纤维制品,适合大规模生产应用 | 回收产物价值较低,对可回收的废弃物种类有限制 |
化学回收 | 有效回收树脂并较大程度地保持回收纤维的性能, 对环境危害小 | 处理程序复杂,成本较高,产物较为复杂,缺乏低耗高效的 全资源化回收技术 |
树脂 | 纤维 | |||
---|---|---|---|---|
种类 | 聚合物类型 | 结构特性 | 种类 | 结构特性 |
环氧树脂 | 热固性 | 含两个或两个以上环氧基团 | 玻璃纤维 | 含有SiO2、Na2O、CaO、Al2O3 |
酚醛树脂 | 热固性 | 酚类与醛类(苯酚、甲醛)聚合而成 | 碳纤维 | 含碳量高于90% |
不饱和聚酯树脂 | 热固性 | 单体为二元酸与二元醇 | 硼纤维 | 芯材为金属丝(钨丝),中间层为硼,表层为涂层 |
聚烯烃 | 热塑性 | 烯烃分子聚合而成 | 玄武岩纤维 | 玄武岩石料高温熔融后拉制而成连续纤维 |
聚酰胺 | 热塑性 | 含有酰胺基团 | 芳纶纤维 | 间位芳纶纤维:锯齿状分子链 对位芳纶纤维:直线状分子链 |
聚碳酸酯 | 热塑性 | 含碳酸酯基 | ||
聚乙烯纤维 | 聚乙烯熔融纺丝制成 |
表2 不同类型树脂和纤维特性
Table 2 Properties of various resins and fibers
树脂 | 纤维 | |||
---|---|---|---|---|
种类 | 聚合物类型 | 结构特性 | 种类 | 结构特性 |
环氧树脂 | 热固性 | 含两个或两个以上环氧基团 | 玻璃纤维 | 含有SiO2、Na2O、CaO、Al2O3 |
酚醛树脂 | 热固性 | 酚类与醛类(苯酚、甲醛)聚合而成 | 碳纤维 | 含碳量高于90% |
不饱和聚酯树脂 | 热固性 | 单体为二元酸与二元醇 | 硼纤维 | 芯材为金属丝(钨丝),中间层为硼,表层为涂层 |
聚烯烃 | 热塑性 | 烯烃分子聚合而成 | 玄武岩纤维 | 玄武岩石料高温熔融后拉制而成连续纤维 |
聚酰胺 | 热塑性 | 含有酰胺基团 | 芳纶纤维 | 间位芳纶纤维:锯齿状分子链 对位芳纶纤维:直线状分子链 |
聚碳酸酯 | 热塑性 | 含碳酸酯基 | ||
聚乙烯纤维 | 聚乙烯熔融纺丝制成 |
化学名称 | 结构特性 | 回收利用 | 文献 |
---|---|---|---|
玻璃纤维增强聚丙烯 | 改性GF表面会发生化学反应,产生接枝共聚物,共聚物分散纠缠于聚丙烯高分子链中,形成复杂结构 | 聚丙烯热解可得热解油或蜡,回收GF可做增强材料 | [ |
玻璃纤维增强酚醛树脂 | 固化过程首先进行凝胶化,再进行交联固化。固化时,在酚核之间形成亚甲基键和醚键 | 在含碳热解气中,钴基催化剂可催化酚醛树脂生成 CF和碳纳米管 | [ |
碳纤维增强环氧树脂 | CF力学性能优良,改性可进一步提高增强体与基体间的浸润性,有利于化学键形成,提高增强体与基体间的固化交联度 | 化学回收法可以得到干净的CF,回收CF的拉伸强度保持率可达95%,环氧树脂可以降解为苯或苯酚的衍生物 | [ |
芳纶纤维增强环氧树脂 | 芳纶纤维经过表面改性可以提高机械绞合程度,表面官能团增多,表面能增大,纤维与树脂的结合强度提高 | 热解得到热解气和热解油 | [ |
表3 FRPC特性及回收
Table 3 The characteristics and recovery of FRPC
化学名称 | 结构特性 | 回收利用 | 文献 |
---|---|---|---|
玻璃纤维增强聚丙烯 | 改性GF表面会发生化学反应,产生接枝共聚物,共聚物分散纠缠于聚丙烯高分子链中,形成复杂结构 | 聚丙烯热解可得热解油或蜡,回收GF可做增强材料 | [ |
玻璃纤维增强酚醛树脂 | 固化过程首先进行凝胶化,再进行交联固化。固化时,在酚核之间形成亚甲基键和醚键 | 在含碳热解气中,钴基催化剂可催化酚醛树脂生成 CF和碳纳米管 | [ |
碳纤维增强环氧树脂 | CF力学性能优良,改性可进一步提高增强体与基体间的浸润性,有利于化学键形成,提高增强体与基体间的固化交联度 | 化学回收法可以得到干净的CF,回收CF的拉伸强度保持率可达95%,环氧树脂可以降解为苯或苯酚的衍生物 | [ |
芳纶纤维增强环氧树脂 | 芳纶纤维经过表面改性可以提高机械绞合程度,表面官能团增多,表面能增大,纤维与树脂的结合强度提高 | 热解得到热解气和热解油 | [ |
热解气 | 含量/% | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
H2 | 5.8 | 7.5 | 11.5 |
CH4 | 10.6 | 15.4 | 20.7 |
CO | 24.2 | 24.0 | 21.8 |
CO2 | 32.6 | 26.0 | 20.4 |
C2H4 | 4.8 | 5.0 | 5.2 |
C2H6 | 2.8 | 3.3 | 3.7 |
C3 | 1.4 | 1.4 | 1.3 |
C4 | 2.6 | 2.7 | 2.5 |
其他 | 15.2 | 14.7 | 12.9 |
表4 GF增强聚酯复合材料不同温度下热解气的化学组成
Table 4 Chemical compositions of GF-reinforced polyester composites with pyrolysis gas at different temperatures
热解气 | 含量/% | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
H2 | 5.8 | 7.5 | 11.5 |
CH4 | 10.6 | 15.4 | 20.7 |
CO | 24.2 | 24.0 | 21.8 |
CO2 | 32.6 | 26.0 | 20.4 |
C2H4 | 4.8 | 5.0 | 5.2 |
C2H6 | 2.8 | 3.3 | 3.7 |
C3 | 1.4 | 1.4 | 1.3 |
C4 | 2.6 | 2.7 | 2.5 |
其他 | 15.2 | 14.7 | 12.9 |
热解油 | 含量/(g/L) | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
苯 | 3.4 | 9.5 | 6.8 |
甲苯 | 15.0 | 31.1 | 27.3 |
乙苯 | 16.7 | 30.0 | 21.5 |
苯乙烯 | 7.9 | 13.7 | 13.6 |
表5 GF增强聚酯复合材料不同温度下热解油中苯、甲苯、乙苯和苯乙烯含量
Table 5 Contents of benzene, toluene, ethylbenzene and styrene in pyrolysis oil of GF-reinforced polyester composites at different temperatures
热解油 | 含量/(g/L) | ||
---|---|---|---|
500℃ | 550℃ | 600℃ | |
苯 | 3.4 | 9.5 | 6.8 |
甲苯 | 15.0 | 31.1 | 27.3 |
乙苯 | 16.7 | 30.0 | 21.5 |
苯乙烯 | 7.9 | 13.7 | 13.6 |
流体 | 临界温度/℃ | 临界压力/ MPa |
---|---|---|
水 | 373.95 | 22.06 |
甲醇 | 239.45 | 8.10 |
乙醇 | 240.85 | 6.14 |
丙醇 | 263.65 | 5.20 |
丙酮 | 234.85 | 4.80 |
CO2 | 31.26 | 7.38 |
表6 常用的超/亚临界流体
Table 6 Most used super and subcritical fluids
流体 | 临界温度/℃ | 临界压力/ MPa |
---|---|---|
水 | 373.95 | 22.06 |
甲醇 | 239.45 | 8.10 |
乙醇 | 240.85 | 6.14 |
丙醇 | 263.65 | 5.20 |
丙酮 | 234.85 | 4.80 |
CO2 | 31.26 | 7.38 |
回收方法 | 试剂、设备 | 工艺参数 | 纤维性能 | 文献 |
---|---|---|---|---|
高温热解 | 固定床反应器 | N2气氛500℃下热解,保持1 h;空气气氛500℃下氧化 | 抗拉强度:3270 MPa 模量:230000 MPa 抗拉强度保持率:93% | [ |
流化床热解 | 流化床反应器, 0.85 mm沙粒 | 空气气氛450℃下热解 | 抗拉强度:285 MPa 模量:(227100±32300) MPa 抗拉强度保持率:73% | [ |
微波热解 | 微波炉 | N2气氛3 kW功率下通电8 s | 抗拉强度:3260 MPa 模量:210000 MPa 抗拉强度保持率:80% | [ |
超临界流体 | 正丙醇 | 压力5.2 MPa,温度310℃,保持20 min | 抗拉强度:4325 MPa 模量:(213200±11600) MPa 抗拉强度保持率:99% | [ |
溶剂溶解 | 硝酸、聚乙二醇、KOH | 室温下硝酸预处理,然后在160℃下的聚乙二醇和 KOH混合液中反应200 min | 抗拉强度:3890 MPa 模量:173790 MPa 抗拉强度保持率:96% | [ |
电化学回收 | KOH、NaCl电解液 | 75℃,电流40 mA,反应36 h | 抗拉强度:4152 MPa 抗拉强度保持率:89.83% | [ |
表7 热解法和溶剂法回收CF过程及性能
Table 7 Process and performance of CF recovery by pyrolysis and solvolysis methods
回收方法 | 试剂、设备 | 工艺参数 | 纤维性能 | 文献 |
---|---|---|---|---|
高温热解 | 固定床反应器 | N2气氛500℃下热解,保持1 h;空气气氛500℃下氧化 | 抗拉强度:3270 MPa 模量:230000 MPa 抗拉强度保持率:93% | [ |
流化床热解 | 流化床反应器, 0.85 mm沙粒 | 空气气氛450℃下热解 | 抗拉强度:285 MPa 模量:(227100±32300) MPa 抗拉强度保持率:73% | [ |
微波热解 | 微波炉 | N2气氛3 kW功率下通电8 s | 抗拉强度:3260 MPa 模量:210000 MPa 抗拉强度保持率:80% | [ |
超临界流体 | 正丙醇 | 压力5.2 MPa,温度310℃,保持20 min | 抗拉强度:4325 MPa 模量:(213200±11600) MPa 抗拉强度保持率:99% | [ |
溶剂溶解 | 硝酸、聚乙二醇、KOH | 室温下硝酸预处理,然后在160℃下的聚乙二醇和 KOH混合液中反应200 min | 抗拉强度:3890 MPa 模量:173790 MPa 抗拉强度保持率:96% | [ |
电化学回收 | KOH、NaCl电解液 | 75℃,电流40 mA,反应36 h | 抗拉强度:4152 MPa 抗拉强度保持率:89.83% | [ |
公司 | 地点 | 回收方法 | 回收能力/(t/a) |
---|---|---|---|
Carbon Conversions Inc | 美国 | 高温热解法 | 2000 |
CFK Valley Stade Recycling GmbH & Co. KG | 德国 | 高温热解法 | 1000 |
ELG Carbon Fibre | 英国 | 高温热解法 | 2000 |
KARBOREK RCF | 意大利 | 高温热解法 | 1000 |
SGL Automotive Carbon Fibres | 美国 | 高温热解法 | 1500 |
Toray Industries | 日本 | 高温热解法 | 1000 |
University of Nottingham | 英国 | 流化床热解法 | 12 |
Hitachi Chemical | 日本 | 超临界流体法 | 12 |
V-Carbon | 美国 | 溶剂溶解法 | 1.7 |
表8 CF复合材料回收公司现状
Table 8 Current CF composite recycling companies
公司 | 地点 | 回收方法 | 回收能力/(t/a) |
---|---|---|---|
Carbon Conversions Inc | 美国 | 高温热解法 | 2000 |
CFK Valley Stade Recycling GmbH & Co. KG | 德国 | 高温热解法 | 1000 |
ELG Carbon Fibre | 英国 | 高温热解法 | 2000 |
KARBOREK RCF | 意大利 | 高温热解法 | 1000 |
SGL Automotive Carbon Fibres | 美国 | 高温热解法 | 1500 |
Toray Industries | 日本 | 高温热解法 | 1000 |
University of Nottingham | 英国 | 流化床热解法 | 12 |
Hitachi Chemical | 日本 | 超临界流体法 | 12 |
V-Carbon | 美国 | 溶剂溶解法 | 1.7 |
1 | Rubino F, Nisticò A, Tucci F, et al. Marine application of fiber reinforced composites: a review[J]. Journal of Marine Science and Engineering, 2020, 8(1): 26. |
2 | Koumoulos E, Trompeta A F, Santos R M, et al. Research and development in carbon fibers and advanced high-performance composites supply chain in Europe: a roadmap for challenges and the industrial uptake[J]. Journal of Composites Science, 2019, 3(3): 86. |
3 | Effing M. Expert insights in Europe's booming composites market[J]. Reinforced Plastics, 2018, 62(4): 219-223. |
4 | Navarro C A, Giffin C R, Zhang B Y, et al. A structural chemistry look at composites recycling[J]. Materials Horizons, 2020, 7(10): 2479-2486. |
5 | 丁江浩, 龚裕, 杨飞华, 等. 热固性树脂复合材料回收方法研究进展[J]. 现代化工, 2020, 40(3): 22-25. |
Ding J H, Gong Y, Yang F H, et al. Research progress on recovery methods of thermosetting resin composites[J]. Modern Chemical Industry, 2020, 40(3): 22-25. | |
6 | Tapper R J, Longana M L, Yu H N, et al. Development of a closed-loop recycling process for discontinuous carbon fibre polypropylene composites[J]. Composites Part B: Engineering, 2018, 146: 222-231. |
7 | 薛山. 纤维增强热固性复合材料废弃物回收处理技术及产业化现状[J]. 有色冶金节能, 2021, 37(6): 55-59. |
Xue S. Recycling technology and industrialization of fiber-reinforced thermoset composites waste[J]. Energy Saving of Nonferrous Metallurgy, 2021, 37(6): 55-59. | |
8 | 郭强, 徐恒元, 何凯, 等. 树脂基复合材料废弃物回收再利用现状及发展趋势[J]. 材料导报, 2019, 33(S2): 634-638. |
Guo Q, Xu H Y, He K, et al. Recycling status and development trend of resin matrix composites wastes[J]. Materials Reports, 2019, 33(S2): 634-638. | |
9 | 宋守许, 胡健, 石磊, 等. 基于机械物理法的废旧热固性酚醛树脂回收工艺的试验研究[J]. 中国机械工程, 2013, 24(1): 29-34. |
Song S X, Hu J, Shi L, et al. Research on recycling technology of waste thermosetting phenolic resins based on mechanical physical method[J]. China Mechanical Engineering, 2013, 24(1): 29-34. | |
10 | Guo J, Tang Y N, Xu Z M. Wood plastic composite produced by nonmetals from pulverized waste printed circuit boards[J]. Environmental Science & Technology, 2010, 44(1): 463-468. |
11 | Guo J Y, Guo J, Xu Z M. Recycling of non-metallic fractions from waste printed circuit boards: a review[J]. Journal of Hazardous Materials, 2009, 168(2/3): 567-590. |
12 | Sharma R, Bansal P P. Use of different forms of waste plastic in concrete—a review[J]. Journal of Cleaner Production, 2016, 112: 473-482. |
13 | Kumar S, Krishnan S. Recycling of carbon fiber with epoxy composites by chemical recycling for future perspective: a review[J]. Chemical Papers, 2020, 74(11): 3785-3807. |
14 | Korniejenko K, Kozub B, Bąk A, et al. Tackling the circular economy challenges—composites recycling: used tyres, wind turbine blades, and solar panels[J]. Journal of Composites Science, 2021, 5(9): 243. |
15 | Krauklis A E, Karl C W, Gagani A I, et al. Composite material recycling technology—state-of-the-art and sustainable development for the 2020s[J]. Journal of Composites Science, 2021, 5(1): 28. |
16 | Utekar S, V K S, More N, et al. Comprehensive study of recycling of thermosetting polymer composites—driving force, challenges and methods[J]. Composites Part B: Engineering, 2021, 207: 108596. |
17 | Hamada H, Fujihara K, Harada A. The influence of sizing conditions on bending properties of continuous glass fiber reinforced polypropylene composites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(9): 979-990. |
18 | Aguado R, Olazar M, San José M J, et al. Wax formation in the pyrolysis of polyolefins in a conical spouted bed reactor[J]. Energy & Fuels, 2002, 16(6): 1429-1437. |
19 | 孙艺蕾, 马跃, 李术元, 等. 聚烯烃塑料的热解和催化热解研究进展[J]. 化工进展, 2021, 40(5): 2784-2801. |
Sun Y L, Ma Y, Li S Y, et al. Research progress in the pyrolysis and catalytic pyrolysis of waste polyolefin plastics[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2784-2801. | |
20 | 刘涛. 酚醛玻璃纤维成型工艺研究[D]. 北京: 北京理工大学, 2015. |
Liu T. Moulding process of phenlic glassfiber reinforceplastic[D]. Beijing: Beijing Institute of Technology, 2015. | |
21 | 黄珍霞, 梁峰, 王军凯, 等. 钴纳米颗粒催化酚醛树脂制备碳纳米管[J]. 硅酸盐学报, 2016, 44(9): 1380-1386. |
Huang Z X, Liang F, Wang J K, et al. Catalytic preparation of carbon nanotubes from phenolic resin using cobalt nanoparticle[J]. Journal of the Chinese Ceramic Society, 2016, 44(9): 1380-1386. | |
22 | Yan H, Lu C X, Jing D Q, et al. Recycling of carbon fibers in epoxy resin composites using supercritical 1-propanol[J]. New Carbon Materials, 2016, 31(1): 46-54. |
23 | 熊永健. 芳纶纤维/环氧树脂复合材料及与EPDM共固化特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Xiong Y J. Study on the Co curing properties of aramid fiber/epoxy composites and EPDM[D]. Harbin: Harbin Institute of Technology, 2020. | |
24 | 王子健, 周晓东. 连续纤维增强热塑性复合材料成型工艺研究进展[J]. 复合材料科学与工程, 2021(10): 120-128. |
Wang Z J, Zhou X D. Research progress on forming process of continuous fiber reinforced thermoplastic composites[J]. Composites Science and Engineering, 2021(10): 120-128. | |
25 | Wurster S. Creating a circular economy in the automotive industry: the contribution of combining crowdsourcing and Delphi research[J]. Sustainability, 2021, 13(12): 6762. |
26 | Colucci G, Ostrovskaya O, Frache A, et al. The effect of mechanical recycling on the microstructure and properties of PA66 composites reinforced with carbon fibers[J]. Journal of Applied Polymer Science, 2015, 132(29): 42275. |
27 | Pietroluongo M, Padovano E, Frache A, et al. Mechanical recycling of an end-of-life automotive composite component[J]. Sustainable Materials and Technologies, 2020, 23: e00143. |
28 | 徐平来, 李娟, 李晓倩. 热固性树脂基复合材料的回收方法研究进展[J]. 工程塑料应用, 2013, 41(1): 100-104. |
Xu P L, Li J, Li X Q. Recycling progress on thermosetting resin based composites[J]. Engineering Plastics Application, 2013, 41(1): 100-104. | |
29 | 张灵静, 陈桦, 蒋建军, 等. 碳纤维增强热固性复合材料回收再利用技术研究进展[J]. 工程塑料应用, 2019, 47(7): 134-140, 150. |
Zhang L J, Chen H, Jiang J J, et al. Research progress on recycling and reuse technology of carbon fiber reinforced thermosetting composites[J]. Engineering Plastics Application, 2019, 47(7): 134-140, 150. | |
30 | Giorgini L, Leonardi C, Mazzocchetti L, et al. Pyrolysis of fiberglass/polyester composites: recovery and characterization of obtained products[J]. FME Transactions, 2016, 44(4): 405-414. |
31 | 关国强, 周文贤, 陈烈强, 等. 碳酸钙强化酚醛型线路板热解脱溴[J]. 化工学报, 2009, 60(1): 216-222. |
Guan G Q, Zhou W X, Chen L Q, et al. Pyrolytic debromination of phenolic resin type PCB enhanced by calcium carbonate[J]. CIESC Journal, 2009, 60(1): 216-222. | |
32 | Gao R T, Xu Z M. Pyrolysis and utilization of nonmetal materials in waste printed circuit boards: debromination pyrolysis, temperature-controlled condensation, and synthesis of oil-based resin[J]. Journal of Hazardous Materials, 2019, 364: 1-10. |
33 | Pimenta S, Pinho S T. The effect of recycling on the mechanical response of carbon fibres and their composites[J]. Composite Structures, 2012, 94(12): 3669-3684. |
34 | Kim K W, Lee H M, An J H, et al. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method[J]. Journal of Environmental Management, 2017, 203: 872-879. |
35 | Pickering S J. Recycling technologies for thermoset composite materials—current status[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(8): 1206-1215. |
36 | Jiang G, Pickering S J, Walker G S, et al. Surface characterisation of carbon fibre recycled using fluidised bed[J]. Applied Surface Science, 2008, 254(9): 2588-2593. |
37 | Marsh G. Reclaiming value from post-use carbon composite[J]. Reinforced Plastics, 2008, 52(7): 36-39. |
38 | Yip H L H, Pickering S J, Rudd C D. Characterisation of carbon fibres recycled from scrap composites using fluidised bed process[J]. Plastics, Rubber and Composites, 2002, 31(6): 278-282. |
39 | 郑炯莉. 微波辅助分解废线路板非金属材料技术研究[D]. 太原: 中北大学, 2019. |
Zheng J L. Microwave assisted degradation of nonmetallic materials from waste print circuit boards[D]. Taiyuan: North University of China, 2019. | |
40 | Sun J, Wang W L, Liu Z, et al. Study of the transference rules for bromine in waste printed circuit boards during microwave-induced pyrolysis[J]. Journal of the Air & Waste Management Association, 2011, 61(5): 535-542. |
41 | Zhang T H, Mao X, Qu J S, et al. Microwave-assisted catalytic pyrolysis of waste printed circuit boards, and migration and distribution of bromine[J]. Journal of Hazardous Materials, 2021, 402: 123749. |
42 | Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing[J]. Nature, 1996, 383(6598): 313-318. |
43 | Borjan D, Knez Ž, Knez M. Recycling of carbon fiber-reinforced composites—difficulties and future perspectives[J]. Materials, 2021, 14(15): 4191. |
44 | Okajima I, Sako T. Recycling of carbon fiber-reinforced plastic using supercritical and subcritical fluids[J]. Journal of Material Cycles and Waste Management, 2017, 19(1): 15-20. |
45 | Li K, Zhang L G, Xu Z M. Decomposition behavior and mechanism of epoxy resin from waste integrated circuits under supercritical water condition[J]. Journal of Hazardous Materials, 2019, 374: 356-364. |
46 | Liu Y Y, Shan G H, Meng L H. Recycling of carbon fibre reinforced composites using water in subcritical conditions[J]. Materials Science and Engineering: A, 2009, 520(1/2): 179-183. |
47 | 潘君齐, 刘光复, 刘志峰, 等. 废弃印刷线路板超临界CO2回收实验研究[J]. 西安交通大学学报, 2007, 41(5): 625-627. |
Pan J Q, Liu G F, Liu Z F, et al. Recycling experiments of discarded printed circuit boards based on supercritical carbon dioxide[J]. Journal of Xi'an Jiaotong University, 2007, 41(5): 625-627. | |
48 | Li J, Xu P L, Zhu Y K, et al. A promising strategy for chemical recycling of carbon fiber/thermoset composites: self-accelerating decomposition in a mild oxidative system[J]. Green Chemistry, 2012, 14(12): 3260-3263. |
49 | 久保内昌敏, 党伟荣, 仙北谷英贵. 胺类固化剂固化的双酚环氧树脂回收再利用的研究[J]. 纤维复合材料, 2002, 19 (1): 58-60, 50. |
Kubouchi M, Dang W R, Sembokuya H. Studies on recycling of bisphenol epoxy resin cured with amine[J]. Fiber Composites, 2002, 19 (1): 58-60, 50. | |
50 | Shi J, Bao L M, Kobayashi R, et al. Reusing recycled fibers in high-value fiber-reinforced polymer composites: improving bending strength by surface cleaning[J]. Composites Science and Technology, 2012, 72(11): 1298-1303. |
51 | Jiang J J, Deng G L, Chen X, et al. On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition[J]. Composites Science and Technology, 2017, 151: 243-251. |
52 | Das M, Chacko R, Varughese S. An efficient method of recycling of CFRP waste using peracetic acid[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1564-1571. |
53 | Sun H F, Guo G P, Ali Memon S, et al. Recycling of carbon fibers from carbon fiber reinforced polymer using electrochemical method[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 10-17. |
54 | Zhu J H, Chen P Y, Su M N, et al. Recycling of carbon fibre reinforced plastics by electrically driven heterogeneous catalytic degradation of epoxy resin[J]. Green Chemistry, 2019, 21(7): 1635-1647. |
55 | Nahil M A, Williams P T. Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 67-75. |
56 | Lester E, Kingman S, Wong K H, et al. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study[J]. Materials Research Bulletin, 2004, 39(10): 1549-1556. |
57 | Jiang G, Pickering S J, Lester E H, et al. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol[J]. Composites Science and Technology, 2009, 69(2): 192-198. |
58 | Kratish Y, Marks T J. Efficient polyester hydrogenolytic deconstruction via tandem catalysis[J]. Angewandte Chemie International Edition, 2022, 61(9): e202112576. |
59 | Li Y W, Wang M, Liu X W, et al. Catalytic transformation of PET and CO2 into high-value chemicals[J]. Angewandte Chemie International Edition, 2022, 61(10): e202117205. |
60 | Oh S, Stache E E. Chemical upcycling of commercial polystyrene via catalyst-controlled photooxidation[J]. Journal of the American Chemical Society, 2022, 144(13): 5745-5749. |
61 | 邵健, 冯军宗, 柳凤琦, 等. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
Shao J, Feng J Z, Liu F Q, et al. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres[J]. CIESC Journal, 2022, 73(9): 3787-3801. | |
62 | Wang X L, An W L, Tian F, et al. High-efficiency hydrolysis of thermosetting polyester resins into porous functional materials using low-boiling aqueous solvents[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 16010-16019. |
63 | Kumar A, von Wolff N, Rauch M, et al. Hydrogenative depolymerization of nylons[J]. Journal of the American Chemical Society, 2020, 142(33): 14267-14275. |
64 | Jensen J P, Skelton K. Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 165-176. |
65 | Gopalraj S K, Kärki T. A review on the recycling of waste carbon fibre/glass fibre-reinforced composites: fibre recovery, properties and life-cycle analysis[J]. SN Applied Sciences, 2020, 2(3): 433. |
66 | 张建川, 张前峰, 蔡红军. 风力发电复合材料叶片废弃物的几种处理方法分析[J]. 材料科学与工程学报, 2012, 30(3): 473-482. |
Zhang J C, Zhang Q F, Cai H J. Analysis on treatment methods of composite blade wastes of wind turbines[J]. Journal of Materials Science and Engineering, 2012, 30(3): 473-482. | |
67 | Paulsen E B, Enevoldsen P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades[J]. Energies, 2021, 14(14): 4247. |
68 | Beauson J, Madsen B, Toncelli C, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 390-399. |
69 | Åkesson D, Foltynowicz Z, Christéen J, et al. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines[J]. Journal of Reinforced Plastics and Composites, 2012, 31(17): 1136-1142. |
70 | Mishnaevsky L. Sustainable end-of-life management of wind turbine blades: overview of current and coming solutions[J]. Materials, 2021, 14(5): 1124. |
71 | Meng F R, Olivetti E, Zhao Y Y, et al. Comparing life cycle energy and global warming potential of carbon fiber composite recycling technologies and waste management options[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 9854-9865. |
72 | Giorgini L, Benelli T, Brancolini G, et al. Recycling of carbon fiber reinforced composite waste to close their life cycle in a cradle-to-cradle approach[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 26: 100368. |
73 | Butenegro J A, Bahrami M, Abenojar J, et al. Recent progress in carbon fiber reinforced polymers recycling: a review of recycling methods and reuse of carbon fibers[J]. Materials, 2021, 14(21): 6401. |
74 | 杜晓渊, 程小全, 王志勇, 等. 碳纤维复合材料回收与再利用技术进展[J]. 高分子材料科学与工程, 2020, 36(8): 182-190. |
Du X Y, Cheng X Q, Wang Z Y, et al. Recycling and reusing of carbon fiber reinforced polymer: a current technical progress[J]. Polymer Materials Science & Engineering, 2020, 36(8): 182-190. | |
75 | Zhang J, Chevali V S, Wang H, et al. Current status of carbon fibre and carbon fibre composites recycling[J]. Composites Part B: Engineering, 2020, 193: 108053. |
76 | 胡炜杰, 钟明建, 杨营, 等. 碳纤维复合材料的回收与再利用技术[J]. 材料导报, 2021, 35(S2): 627-633. |
Hu W J, Zhong M J, Yang Y, et al. Recycling and reuse technology of carbon fiber composite materials[J]. Materials Reports, 2021, 35(S2): 627-633. | |
77 | Pickering S J, Kelly R M, Kennerley J R, et al. A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites[J]. Composites Science and Technology, 2000, 60(4): 509-523. |
78 | Song Y S, Youn J R, Gutowski T G. Life cycle energy analysis of fiber-reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2009, 40(8): 1257-1265. |
79 | Pimenta S, Pinho S T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook[J]. Waste Management, 2011, 31(2): 378-392. |
80 | Witik R A, Teuscher R, Michaud V, et al. Carbon fibre reinforced composite waste: an environmental assessment of recycling, energy recovery and landfilling[J]. Composites Part A: Applied Science and Manufacturing, 2013, 49: 89-99. |
81 | Hedlund-Astrom A. Model for end of life treatment of polymer composite materials[D].Stockholm: Kungliga Tekniska Hogskolan, 2005. |
82 | Oliveux G, Dandy L O, Leeke G A. Current status of recycling of fibre reinforced polymers: review of technologies, reuse and resulting properties[J]. Progress in Materials Science, 2015, 72: 61-99. |
83 | Yuan Y C, Sun Y X, Yan S J, et al. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites[J]. Nature Communications, 2017, 8: 14657. |
84 | Wang S, Ma S Q, Li Q, et al. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite[J]. Green Chemistry, 2019, 21(6): 1484-1497. |
85 | Wang B B, Ma S Q, Yan S F, et al. Readily recyclable carbon fiber reinforced composites based on degradable thermosets: a review[J]. Green Chemistry, 2019, 21(21): 5781-5796. |
86 | Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965-968. |
87 | Ma S Q, Webster D C. Degradable thermosets based on labile bonds or linkages: a review[J]. Progress in Polymer Science, 2018, 76: 65-110. |
88 | Yamaguchi A, Hashimoto T, Kakichi Y, et al. Recyclable carbon fiber-reinforced plastics (CFRP) containing degradable acetal linkages: synthesis, properties, and chemical recycling[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(8): 1052-1059. |
89 | Johnson L M, Ledet E, Huffman N D, et al. Controlled degradation of disulfide-based epoxy thermosets for extreme environments[J]. Polymer, 2015, 64: 84-92. |
90 | Ruiz de Luzuriaga A, Martin R, Markaide N, et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites[J]. Materials Horizons, 2016, 3(3): 241-247. |
91 | La Rosa A D, Banatao D R, Pastine S J, et al. Recycling treatment of carbon fibre/epoxy composites: materials recovery and characterization and environmental impacts through life cycle assessment[J]. Composites Part B: Engineering, 2016, 104: 17-25. |
92 | La Rosa A D, Blanco I, Banatao D R, et al. Innovative chemical process for recycling thermosets cured with Recyclamines® by converting bio-epoxy composites in reusable thermoplastic—an LCA study[J]. Materials, 2018, 11(3): 353. |
93 | Job S. Recycling composites commercially[J]. Reinforced Plastics, 2014, 58(5): 32-38. |
94 | 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1): 64-76. |
Hu Q L, Duan Y F, Liu Z, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 64-76. |
[1] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[4] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[5] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[6] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[7] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[8] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[9] | 鲁文静, 李先锋. 液流电池多孔离子传导膜研究进展[J]. 化工学报, 2023, 74(1): 192-204. |
[10] | 黄宽, 马永德, 蔡镇平, 曹彦宁, 江莉龙. 油脂催化加氢转化制备第二代生物柴油研究进展[J]. 化工学报, 2023, 74(1): 380-396. |
[11] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[12] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[13] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[14] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[15] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||