化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3968-3978.DOI: 10.11949/0438-1157.20230622
• 材料化学工程与纳米技术 • 上一篇
刘远超1,2(), 关斌1, 钟建斌1, 徐一帆1, 蒋旭浩1, 李耑1
收稿日期:
2023-06-25
修回日期:
2023-08-31
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
刘远超
作者简介:
刘远超(1977—),男,博士,副教授,liuyuanchao@bipt.edu.cn
基金资助:
Yuanchao LIU1,2(), Bin GUAN1, Jianbin ZHONG1, Yifan XU1, Xuhao JIANG1, Duan LI1
Received:
2023-06-25
Revised:
2023-08-31
Online:
2023-09-25
Published:
2023-11-20
Contact:
Yuanchao LIU
摘要:
基于第一性原理的密度泛函理论(DFT)结合Boltzmann输运方程(BTE)和形变势理论(DP)系统地研究了单层ZrSe2和HfSe2的热电输运特性,分析了二者声子的谐性效应和非谐性效应对其晶格热导率的影响机理,并计算了不同温度下二者的塞贝克系数、功率因数、电导率等热电参数。研究结果表明:在300 K时,单层ZrSe2和HfSe2的晶格热导率分别为3.23和4.50 W/(m·K),且随温升降低;各声子支中横向声学支(TA)对热导率的贡献起主要作用。300 K时n型单层ZrSe2和HfSe2的最高ZT分别为1.50和1.95(高于p型),其中单层HfSe2表现更佳,因此n型单层HfSe2是一种良好的热电材料。该研究结果可为基于单层ZrSe2和HfSe2的热电设计和应用提供理论指导及借鉴。
中图分类号:
刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978.
Yuanchao LIU, Bin GUAN, Jianbin ZHONG, Yifan XU, Xuhao JIANG, Duan LI. Investigation of thermoelectric transport properties of single-layer XSe2 (X=Zr/Hf)[J]. CIESC Journal, 2023, 74(9): 3968-3978.
图4 不同温度下声子支对单层ZrSe2和HfSe2总热导率的贡献ZA—面外声学支;TA—面内横向声学支;LA—面内纵向声学支;ZO—面外光学支;TO—面内横向光学支;LO—面内纵向光学支
Fig.4 Contribution of phonon branches to the total thermal conductivity of monolayer ZrSe2 and HfSe2 at different temperatures
材料 | ZA | TA | LA | ZO | TO | LO |
---|---|---|---|---|---|---|
ZrSe2 | 32.14% | 35.40% | 23.90% | 3.24% | 1.30% | 0.17% |
HfSe2 | 31.07% | 36.07% | 25.62% | 2.24% | 1.21% | 0.15% |
表1 声子支对单层ZrSe2和单层HfSe2总热导率的贡献情况(300 K)
Table 1 Contributions of phonon branches to the total thermal conductivity of monolayer ZrSe2 and HfSe2 (300 K)
材料 | ZA | TA | LA | ZO | TO | LO |
---|---|---|---|---|---|---|
ZrSe2 | 32.14% | 35.40% | 23.90% | 3.24% | 1.30% | 0.17% |
HfSe2 | 31.07% | 36.07% | 25.62% | 2.24% | 1.21% | 0.15% |
材料 | 平均格林艾森参数 | ||||
---|---|---|---|---|---|
300 K | 450 K | 600 K | 750 K | 900 K | |
ZrSe2 | 1.514 | 1.517 | 1.518 | 1.518 | 1.519 |
HfSe2 | 1.339 | 1.345 | 1.347 | 1.348 | 1.349 |
表2 不同温度下各声子支对单层ZrSe2和单层HfSe2的平均格林艾森参数
Table 2 Mean Grüneisen parameters of each phonon branch to monolayer ZrSe2 and HfSe2
材料 | 平均格林艾森参数 | ||||
---|---|---|---|---|---|
300 K | 450 K | 600 K | 750 K | 900 K | |
ZrSe2 | 1.514 | 1.517 | 1.518 | 1.518 | 1.519 |
HfSe2 | 1.339 | 1.345 | 1.347 | 1.348 | 1.349 |
图11 不同温度下单层ZrSe2和单层HfSe2的累积晶格热导率随MFP和频率的变化关系
Fig.11 Cumulative lattice thermal conductivity of monolayer ZrSe2 and HfSe2 as a function of MFP and frequency at different temperatures
材料 | 载流子 | 有效质量 | 形变势常数El/eV | 弹性常数C2D/(J/m2) | 载流子迁移率μ/(cm2/(V·s)) | 弛豫时间τ/(10-13 s) | |
---|---|---|---|---|---|---|---|
m | m | ||||||
ZrSe2 | 空穴(p-type) | -0.354 | -0.331 | -7.76 | 64.24 | 128.82 | 0.25 |
电子(n-type) | 1.999 | 0.251 | -1.93 | 64.24 | 490.33 | 1.97 | |
HfSe2 | 空穴(p-type) | -0.383 | -0.368 | -7.64 | 69.11 | 117.48 | 0.25 |
电子(n-type) | 2.231 | 0.218 | -1.40 | 69.11 | 1031.54 | 4.08 |
表3 单层ZrSe2和HfSe2载流子的m* 、El、C2D、 μ和 τ (300 K)
Table 3 m*, El, C2D, μ and τ of carriers in monolayer ZrSe2 and HfSe2 (300 K)
材料 | 载流子 | 有效质量 | 形变势常数El/eV | 弹性常数C2D/(J/m2) | 载流子迁移率μ/(cm2/(V·s)) | 弛豫时间τ/(10-13 s) | |
---|---|---|---|---|---|---|---|
m | m | ||||||
ZrSe2 | 空穴(p-type) | -0.354 | -0.331 | -7.76 | 64.24 | 128.82 | 0.25 |
电子(n-type) | 1.999 | 0.251 | -1.93 | 64.24 | 490.33 | 1.97 | |
HfSe2 | 空穴(p-type) | -0.383 | -0.368 | -7.64 | 69.11 | 117.48 | 0.25 |
电子(n-type) | 2.231 | 0.218 | -1.40 | 69.11 | 1031.54 | 4.08 |
1 | Naguib M, Mochalin V N, Barsoum M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. |
2 | Qin D, Yan P, Ding G, et al. Monolayer PdSe2: a promising two-dimensional thermoelectric material[J]. Scientific Reports, 2018, 8(1): 2764. |
3 | Li A R, Hu C L, He B, et al. Demonstration of valley anisotropy utilized to enhance the thermoelectric power factor[J]. Nature Communications, 2021, 12(1): 5408. |
4 | Jaziri N, Boughamoura A, Müller J, et al. A comprehensive review of thermoelectric generators: technologies and common applications[J]. Energy Reports, 2020, 6(7): 264-287. |
5 | Liu Z H, Mao J, Sui J H, et al. High thermoelectric performance of α-MgAgSb for power generation[J]. Energy & Environmental Science, 2018, 11(1): 23-44. |
6 | Ortega S, Ibáñez M, Liu Y, et al. Bottom-up engineering of thermoelectric nanomaterials and devices from solution-processed nanoparticle building blocks[J]. Chemical Society Reviews, 2017, 46(12): 3510-3528. |
7 | Mleczko M J, Zhang C F, Lee H R, et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides[J]. Science Advances, 2017, 3(8): e1700481. |
8 | Wang X M, Mo D C, Lu S S. On the thermoelectric transport properties of graphyne by the first-principles method[J]. The Journal of Chemical Physics, 2013, 138(20): 204704-204712. |
9 | Wickramaratne D, Zahid F, Lake R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides[J]. The Journal of Chemical Physics, 2014, 140(12): 124710-124722. |
10 | Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Physical Review B, Condensed Matter, 1993, 47(1): 558-561. |
11 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Condensed Matter, 1996, 54(16): 11169-11186. |
12 | Blöchl P E, Jepsen O, Andersen O K. Improved tetrahedron method for brillouin-zone integrations[J]. Physical Review B, 1994, 49(23): 16223-16233. |
13 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
14 | Baroni S, de Gironcoli S, Corso A D, et al. Phonons and related crystal properties from density-functional perturbation theory[J]. Reviews of Modern Physics, 2001, 73(2): 515-562. |
15 | Li W, Carrete J, Katcho N A, et al. ShengBTE: a solver of the Boltzmann transport equation for phonons[J]. Computer Physics Communications, 2014, 185(6): 1747-1758. |
16 | Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities[J]. Computer Physics Communications, 2006, 175(1): 67-71. |
17 | Bardeen J, Shockley W. Deformation potentials and mobilities in non-polar crystals[J]. Physical Review, 1950, 80(1): 72-80. |
18 | Takagi S, Toriumi A, Iwase M, et al. On the universality of inversion layer mobility in Si MOSFET’s (Part Ⅰ): Effects of substrate impurity concentration[J]. IEEE Transactions on Electron Devices, 1994, 41(12): 2357-2362. |
19 | Zhang L C, Qin G Z, Fang W Z, et al. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility[J]. Scientific Reports, 2016, 6(1): 19830. |
20 | Peng B, Zhang H, Shao H Z, et al. Towards intrinsic phonon transport in single-layer MoS2 [J]. Annalen Der Physik, 2016, 528(6): 504-511. |
21 | Hong Y, Zhang J C, Zeng X C. Thermal conductivity of monolayer MoSe2 and MoS2 [J]. The Journal of Physical Chemistry C, 2016, 120(45): 26067-26075. |
22 | Ouyang B, Chen S D, Jing Y H, et al. Enhanced thermoelectric performance of two dimensional MS2 (M=Mo, W) through phase engineering[J]. Journal of Materiomics, 2018, 4(4): 329-337. |
23 | Lindroth D O, Erhart P. Thermal transport in van der Waals solids from first-principles calculations[J]. Physical Review B, 2016, 94(11): 115205. |
24 | Shafique A, Samad A, Shin Y H. Ultra low lattice thermal conductivity and high carrier mobility of monolayer SnS2 and SnSe2: a first principles study[J]. Physical Chemistry Chemical Physics, 2017, 19(31): 20677-20683. |
25 | Abdulsalam M, Rugut E, Joubert D P. Mechanical, thermal and thermoelectric properties of MX2 (M=Zr, Hf; X=S, Se)[J]. Materials Today Communications, 2020, 25: 101434. |
26 | Gonze X, Lee C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory[J]. Physical Review B, 1997, 55(16): 10355-10368. |
27 | Mounet N, Marzari N. First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives[J]. Physical Review B, 2005, 71(20): 205214. |
28 | Huang L F, Cao T F, Gong P L, et al. Isotope effects on the vibrational, Invar, and Elinvar properties of pristine and hydrogenated graphene[J]. Solid State Communications, 2014, 190: 5-9. |
29 | Wu X F, Varshney V, Lee J, et al. Hydrogenation of penta-graphene leads to unexpected large improvement in thermal conductivity[J]. Nano Letters, 2016, 16(6): 3925-3935. |
30 | Carrete J, Mingo N, Curtarolo S. Low thermal conductivity and triaxial phononic anisotropy of SnSe[J]. Applied Physics Letters, 2014, 105(10): 101907-101911. |
31 | Schelling P K, Phillpot S R, Keblinski P. Comparison of atomic-level simulation methods for computing thermal conductivity[J]. Physical Review B, 2002, 65(14): 144306. |
32 | Yumnam G, Pandey T, Singh A K. High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: a first principles study[J]. The Journal of Chemical Physics, 2015, 143(23): 234704-234712. |
33 | Sun J F, Singh D J. Thermoelectric properties of Mg2 (Ge,Sn): model and optimization of ZT[J]. Physical Review Applied, 2016, 5(2): 024006. |
34 | Li G P, Ding G Q, Gao G Y. Thermoelectric properties of SnSe2 monolayer[J]. Journal of Physics: Condensed Matter, 2017, 29(1): 015001. |
35 | Jin Z L, Liao Q W, Fang H S, et al. A revisit to high thermoelectric performance of single-layer MoS2 [J]. Scientific Reports, 2015, 5(1): 18342. |
36 | Ding G Q, Gao G Y, Huang Z S, et al. Thermoelectric properties of monolayer MSe2 (M=Zr, Hf): low lattice thermal conductivity and a promising figure of merit[J]. Nanotechnology, 2016, 27(37): 375703. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[5] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[9] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[10] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[11] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[12] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[13] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[14] | 杨辉著, 兰精灵, 杨月, 梁嘉林, 吕传文, 朱永刚. 高功率平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(4): 1561-1569. |
[15] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 135
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||