| 1 |
Poonam, Sharma K, Arora A, et al. Review of supercapacitors: materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825.
|
| 2 |
Yaseen M, Khattak M A K, Humayun M, et al. A review of supercapacitors: materials design, modification, and applications[J]. Energies, 2021, 14(22): 7779
|
| 3 |
Olabi A G, Abbas Q, Al Makky A, et al. Supercapacitors as next generation energy storage devices: properties and applications[J]. Energy, 2022, 248: 123617.
|
| 4 |
Zhai Z Z, Zhang L H, Du T M, et al. A review of carbon materials for supercapacitors[J]. Materials & Design, 2022, 221: 111017.
|
| 5 |
An C H, Zhang Y, Guo H N, et al. Metal oxide-based supercapacitors: progress and prospectives[J]. Nanoscale Advances, 2019, 1(12): 4644-4658.
|
| 6 |
Li L, Meng J, Zhang M T, et al. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors[J]. Chemical Communications, 2022, 58(2): 185-207.
|
| 7 |
Lv S, Ma L Y, Shen X Y, et al. Recent design and control of carbon materials for supercapacitors[J]. Journal of Materials Science, 2021, 56(3): 1919-1942.
|
| 8 |
Sevilla M, Mokaya R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage[J]. Energy & Environmental Science, 2014, 7(4): 1250-1280.
|
| 9 |
Herou S, Ribadeneyra M C, Madhu R, et al. Ordered mesoporous carbons from lignin: a new class of biobased electrodes for supercapacitors[J]. Green Chemistry, 2019, 21(3): 550-559.
|
| 10 |
Su C I, Wang C M, Lu K W, et al. Evaluation of activated carbon fiber applied in supercapacitor electrodes[J]. Fibers and Polymers, 2014, 15(8): 1708-1714.
|
| 11 |
Zhu S, Ni J F, Li Y. Carbon nanotube-based electrodes for flexible supercapacitors[J]. Nano Research, 2020, 13(7): 1825-1841.
|
| 12 |
Zhang D, Tan C, Zhang W Z, et al. Expanded graphite-based materials for supercapacitors: a review[J]. Molecules, 2022, 27(3): 716.
|
| 13 |
Velasco A, Ryu Y K, Boscá A, et al. Recent trends in graphene supercapacitors: from large area to microsupercapacitors[J]. Sustainable Energy & Fuels, 2021, 5(5): 1235-1254.
|
| 14 |
Meng Q F, Cai K F, Chen Y X, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285.
|
| 15 |
Han Y Q, Dai L M. Conducting polymers for flexible supercapacitors[J]. Macromolecular Chemistry and Physics, 2019, 220(3): 1800355
|
| 16 |
Kuila B K, Nandan B, Böhme M, et al. Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties[J]. Chemical Communications, 2009(38): 5749-5751.
|
| 17 |
Wang K, Huang J Y, Wei Z X. Conducting polyaniline nanowire arrays for high performance supercapacitors[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8062-8067.
|
| 18 |
Wang Y, Xu S Q, Cheng H, et al. Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method[J]. Applied Surface Science, 2018, 428: 315-321.
|
| 19 |
Hu C L, Zhang X Y, Liu B, et al. Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage[J]. Electrochimica Acta, 2020, 338: 135846.
|
| 20 |
Tian D, Cheng H, Li Q, et al. The ordered polyaniline nanowires wrapped on the polypyrrole nanotubes as electrode materials for electrochemical energy storage[J]. Electrochimica Acta, 2021, 398: 139328.
|
| 21 |
Peng S, Liu B, Zhang X Y, et al. Large-area polyaniline nanorod growth on a monolayer polystyrene nanosphere array as an electrode material for supercapacitors[J]. ACS Applied Energy Materials, 2021, 4(12): 14766-14777.
|
| 22 |
Liu B, Zhang X Y, Tian D, et al. In situ growth of oriented polyaniline nanorod arrays on the graphite flake for high-performance supercapacitors[J]. ACS Omega, 2020, 5(50): 32395-32402.
|
| 23 |
Chen S Y, Zhang X Y, Liu B, et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires[J]. Electrochimica Acta, 2018, 292: 435-445.
|
| 24 |
陈韶云, 徐东, 陈龙, 等. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238.
|
|
Chen S Y, Xu D, Chen L, et al. Preparation and adsorption properties of monolayer polyaniline microsphere arrays[J]. CIESC Journal, 2023, 74(5): 2228-2238.
|
| 25 |
徐东, 田杜, 陈龙, 等. 聚苯胺/二氧化锰/聚吡咯复合纳米球的制备及其电化学储能性[J]. 化工学报, 2023, 74(3): 1379-1389.
|
|
Xu D, Tian D, Chen L, et al. Preparation and electrochemical energy storage of polyaniline/manganese dioxide/polypyrrole composite nanospheres[J]. CIESC Journal, 2023, 74(3): 1379-1389.
|
| 26 |
Chiou N R, Lu C M, Guan J J, et al. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties[J]. Nature Nanotechnology, 2007, 2(6): 354-357.
|
| 27 |
Wang K, Wu H P, Meng Y N, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1): 14-31.
|
| 28 |
Xiong W S, Jiang Y, Xia Y, et al. A sustainable approach for scalable production of α - F e 2 O 3 nanocrystals with 3D interconnected porous architectures on flexible carbon textiles as integrated electrodes for lithium-ion batteries[J]. Journal of Power Sources, 2018, 401: 65-72.
|
| 29 |
Lu X F, Chen X Y, Zhou W, et al. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14843-14850.
|
| 30 |
Li G R, Feng Z P, Zhong J H, et al. Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances[J]. Macromolecules, 2010, 43(5): 2178-2183.
|
| 31 |
Yu P P, Li Y Z, Zhao X, et al. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor[J]. Langmuir, 2014, 30(18): 5306-5313.
|
| 32 |
Li J P, Ren Y Q, Ren Z H, et al. Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(46): 23307-23315.
|
| 33 |
Yang Q Y, Huang J, Tu J Y, et al. A micropore-dominant N, P, S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid[J]. Microporous and Mesoporous Materials, 2021, 316: 110951.
|
| 34 |
Liu T Y, Zhou Z P, Guo Y C, et al. Block copolymer derived uniform mesopores enable ultrafast electron and ion transport at high mass loadings[J]. Nature Communications, 2019, 10(1): 675.
|
| 35 |
Lu Y, Liang J N, Deng S F, et al. Hypercrosslinked polymers enabled micropore-dominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors[J]. Nano Energy, 2019, 65: 103993.
|