化工学报 ›› 2025, Vol. 76 ›› Issue (5): 2313-2326.DOI: 10.11949/0438-1157.20241314
齐昊1(
), 王玉杰1,2(
), 李申辉1, 邹琦2, 刘轶群2, 赵之平1(
)
收稿日期:2024-11-18
修回日期:2025-01-24
出版日期:2025-05-25
发布日期:2025-06-13
通讯作者:
王玉杰,赵之平
作者简介:齐昊(1998—),男,硕士研究生,2765618801@qq.com
基金资助:
Hao QI1(
), Yujie WANG1,2(
), Shenhui LI1, Qi ZOU2, Yiqun LIU2, Zhiping ZHAO1(
)
Received:2024-11-18
Revised:2025-01-24
Online:2025-05-25
Published:2025-06-13
Contact:
Yujie WANG, Zhiping ZHAO
摘要:
基于第一性原理计算,构建出11种双金属有机框架Co/Zn-ZIFs分子模型(1#、2#、3#等),每一种模型各窗口结构相同,采用巨正则蒙特卡罗的方法研究了C3H6、C3H8分别在Co/Zn-ZIFs上的吸附性能,通过吸附热分布、吸附位点、弱相互作用、静电势及差分电荷密度等方法分析了C3H6、C3H8分别在Co/Zn-ZIFs上吸附机理,并采用分子动力学计算了C3H6、C3H8分别在Co/Zn-ZIFs窗口处的扩散特性。结果表明:C3H6、C3H8在Co/Zn-ZIFs上的吸附主要作用在配体咪唑环与甲基附近;一定范围内,升高温度、降低压力均有利于实现优先吸附C3H8,在环境温度为323 K,环境压力为0.5 bar下,3# Co/Zn-ZIFs的C3H8对C3H6的理想吸附选择性最高,为1.25。C3H6、C3H8在6# Co/Zn-ZIFs窗口处扩散自由能差值最大,为14.60 kJ/mol,C3H6、C3H8自扩散系数分别为3.910×10-10和1.445×10-12,C3H6/C3H8理想扩散选择性最高,为270.59。对于相同金属比例的不同Co/Zn-ZIFs分子模型,具有相近的C3H6吸附量和C3H8吸附量,当占比少的金属原子呈相间分布时,C3H6、C3H8的扩散自由能最大,且C3H8与C3H6的扩散自由能差值变大,从而提升了C3H6/C3H8分离选择性。对于不同金属比例的Co/Zn-ZIFs分子模型,具有相近的C3H6吸附量和C3H8吸附量,随着Co/Zn比例上升,C3H8、C3H6分子的扩散自由能均逐渐增大,扩散阻力增大。结果对分析Co/Zn-ZIFs分离C3H6/C3H8提供了极具价值的理论依据。
中图分类号:
齐昊, 王玉杰, 李申辉, 邹琦, 刘轶群, 赵之平. 双金属Co/Zn-ZIFs中C3H6和C3H8吸附和扩散行为分子模拟研究[J]. 化工学报, 2025, 76(5): 2313-2326.
Hao QI, Yujie WANG, Shenhui LI, Qi ZOU, Yiqun LIU, Zhiping ZHAO. Molecular simulation study on adsorption and diffusion of C3H6 and C3H8 on Co/Zn-ZIFs[J]. CIESC Journal, 2025, 76(5): 2313-2326.
| Co/Zn-ZIFs | Zn/Co | N | C1 | C2 | C3 | H1 | H2 |
|---|---|---|---|---|---|---|---|
| Zn-(2-MeIm)-Zn | 1.552 | -0.701 | -0.152 | 0.784 | -0.586 | 0.163 | 0.141 |
| Co-(2-MeIm)-Co | 1.649 | -0.707 | -0.165 | 0.787 | -0.574 | 0.166 | 0.131 |
| Zn-(2-MeIm)-Co (Zn) | 1.552 | -0.592 | -0.064 | 0.543 | -0.615 | 0.112 | 0.159 |
| Co-(2-MeIm)-Zn (Co) | 1.649 | -0.689 | -0.090 | 0.543 | -0.615 | 0.118 | 0.159 |
表1 Co/Zn-ZIFs分子模型的点电荷
Table 1 Point charges for molecular modeling of Co/Zn-ZIFs
| Co/Zn-ZIFs | Zn/Co | N | C1 | C2 | C3 | H1 | H2 |
|---|---|---|---|---|---|---|---|
| Zn-(2-MeIm)-Zn | 1.552 | -0.701 | -0.152 | 0.784 | -0.586 | 0.163 | 0.141 |
| Co-(2-MeIm)-Co | 1.649 | -0.707 | -0.165 | 0.787 | -0.574 | 0.166 | 0.131 |
| Zn-(2-MeIm)-Co (Zn) | 1.552 | -0.592 | -0.064 | 0.543 | -0.615 | 0.112 | 0.159 |
| Co-(2-MeIm)-Zn (Co) | 1.649 | -0.689 | -0.090 | 0.543 | -0.615 | 0.118 | 0.159 |
| 分子名称 | 联合原子 | 势陷深度ε/(kJ/mol) | 平衡距离σ/Å |
|---|---|---|---|
| C3H8 | CH3 | 3.750 | 0.8142 |
| CH2 | 3.950 | 0.3820 | |
| C3H6 | CH3 | 3.750 | 0.8142 |
| CH2 | 3.675 | 0.7058 | |
| CH | 3.730 | 0.3904 |
表2 TraPPE力场中C3H8和C3H6的LJ参数
Table 2 Lennard-Jones parameters for propane and propylene in the TraPPE force field
| 分子名称 | 联合原子 | 势陷深度ε/(kJ/mol) | 平衡距离σ/Å |
|---|---|---|---|
| C3H8 | CH3 | 3.750 | 0.8142 |
| CH2 | 3.950 | 0.3820 | |
| C3H6 | CH3 | 3.750 | 0.8142 |
| CH2 | 3.675 | 0.7058 | |
| CH | 3.730 | 0.3904 |
MOF 模型 | 温度/K | 理想选择性 | MOF 模型 | 温度/K | 理想选择性 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 bar | 1.0 bar | 1.5 bar | 2.0 bar | 2.5 bar | 0.5 bar | 1.0 bar | 1.5 bar | 2.0 bar | 2.5 bar | ||||
| 1 # | 273 | 0.986 | 1.042 | 1.049 | 1.055 | 1.061 | 7 # | 273 | 1.021 | 1.043 | 1.052 | 1.057 | 1.060 |
| 298 | 0.837 | 1.005 | 1.018 | 1.032 | 1.040 | 298 | 0.943 | 1.005 | 1.021 | 1.034 | 1.040 | ||
| 323 | 0.802 | 0.925 | 0.963 | 0.993 | 1.005 | 323 | 0.814 | 0.932 | 0.968 | 0.995 | 1.009 | ||
| 2 # | 273 | 1.019 | 1.042 | 1.053 | 1.054 | 1.069 | 8 # | 273 | 0.993 | 1.040 | 1.049 | 1.058 | 1.059 |
| 298 | 0.940 | 1.000 | 1.018 | 1.031 | 1.039 | 298 | 0.861 | 1.007 | 1.022 | 1.032 | 1.040 | ||
| 323 | 0.818 | 0.932 | 0.966 | 0.993 | 1.007 | 323 | 0.822 | 0.936 | 0.972 | 0.998 | 1.012 | ||
| 3 # | 273 | 1.020 | 1.043 | 1.050 | 1.055 | 1.059 | 9 # | 273 | 1.023 | 1.042 | 1.049 | 1.056 | 1.061 |
| 298 | 0.941 | 1.003 | 1.022 | 1.033 | 1.040 | 298 | 0.946 | 1.002 | 1.017 | 1.034 | 1.039 | ||
| 323 | 0.810 | 0.930 | 0.969 | 0.996 | 1.008 | 323 | 0.823 | 0.936 | 0.971 | 0.997 | 1.009 | ||
| 4 # | 273 | 1.019 | 1.046 | 1.049 | 1.055 | 1.058 | 10 # | 273 | 1.023 | 1.046 | 1.049 | 1.059 | 1.062 |
| 298 | 0.941 | 1.002 | 1.022 | 1.034 | 1.038 | 298 | 0.952 | 1.007 | 1.022 | 1.065 | 1.041 | ||
| 323 | 0.807 | 0.930 | 0.967 | 0.995 | 1.009 | 323 | 0.824 | 0.940 | 0.972 | 0.998 | 1.009 | ||
| 5 # | 273 | 1.017 | 1.044 | 1.048 | 1.054 | 1.059 | 11 # | 273 | 1.019 | 1.042 | 1.051 | 1.055 | 1.058 |
| 298 | 0.943 | 1.006 | 1.026 | 1.033 | 1.039 | 298 | 0.938 | 0.995 | 1.020 | 1.034 | 1.041 | ||
| 323 | 0.808 | 0.934 | 0.969 | 0.999 | 1.012 | 323 | 0.810 | 0.930 | 0.966 | 0.995 | 1.011 | ||
| 6 # | 273 | 1.021 | 1.044 | 1.051 | 1.057 | 1.061 | ZIF-8 | 273 | 1.015 | 1.027 | 1.045 | 1.054 | 1.060 |
| 298 | 0.867 | 0.991 | 1.004 | 1.021 | 1.031 | 298 | 0.932 | 1.011 | 1.023 | 1.030 | 1.037 | ||
| 323 | 0.819 | 0.933 | 0.972 | 0.998 | 1.012 | 323 | 0.820 | 0.902 | 0.978 | 0.994 | 1.007 | ||
| ZIF-67 | 273 | 1.013 | 1.023 | 1.037 | 1.056 | 1.065 | |||||||
| 298 | 0.944 | 1.005 | 1.021 | 1.033 | 1.043 | ||||||||
| 323 | 0.823 | 0.911 | 0.976 | 0.997 | 1.009 | ||||||||
表3 不同温度压力下不同金属比例Co/Zn-ZIFs中C3H6/ C3H8理想选择性
Table 3 Ideal selectivity of C3H6/ C3H8 in Co/Zn-ZIFs with different metal ratios at different temperatures and pressures
MOF 模型 | 温度/K | 理想选择性 | MOF 模型 | 温度/K | 理想选择性 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.5 bar | 1.0 bar | 1.5 bar | 2.0 bar | 2.5 bar | 0.5 bar | 1.0 bar | 1.5 bar | 2.0 bar | 2.5 bar | ||||
| 1 # | 273 | 0.986 | 1.042 | 1.049 | 1.055 | 1.061 | 7 # | 273 | 1.021 | 1.043 | 1.052 | 1.057 | 1.060 |
| 298 | 0.837 | 1.005 | 1.018 | 1.032 | 1.040 | 298 | 0.943 | 1.005 | 1.021 | 1.034 | 1.040 | ||
| 323 | 0.802 | 0.925 | 0.963 | 0.993 | 1.005 | 323 | 0.814 | 0.932 | 0.968 | 0.995 | 1.009 | ||
| 2 # | 273 | 1.019 | 1.042 | 1.053 | 1.054 | 1.069 | 8 # | 273 | 0.993 | 1.040 | 1.049 | 1.058 | 1.059 |
| 298 | 0.940 | 1.000 | 1.018 | 1.031 | 1.039 | 298 | 0.861 | 1.007 | 1.022 | 1.032 | 1.040 | ||
| 323 | 0.818 | 0.932 | 0.966 | 0.993 | 1.007 | 323 | 0.822 | 0.936 | 0.972 | 0.998 | 1.012 | ||
| 3 # | 273 | 1.020 | 1.043 | 1.050 | 1.055 | 1.059 | 9 # | 273 | 1.023 | 1.042 | 1.049 | 1.056 | 1.061 |
| 298 | 0.941 | 1.003 | 1.022 | 1.033 | 1.040 | 298 | 0.946 | 1.002 | 1.017 | 1.034 | 1.039 | ||
| 323 | 0.810 | 0.930 | 0.969 | 0.996 | 1.008 | 323 | 0.823 | 0.936 | 0.971 | 0.997 | 1.009 | ||
| 4 # | 273 | 1.019 | 1.046 | 1.049 | 1.055 | 1.058 | 10 # | 273 | 1.023 | 1.046 | 1.049 | 1.059 | 1.062 |
| 298 | 0.941 | 1.002 | 1.022 | 1.034 | 1.038 | 298 | 0.952 | 1.007 | 1.022 | 1.065 | 1.041 | ||
| 323 | 0.807 | 0.930 | 0.967 | 0.995 | 1.009 | 323 | 0.824 | 0.940 | 0.972 | 0.998 | 1.009 | ||
| 5 # | 273 | 1.017 | 1.044 | 1.048 | 1.054 | 1.059 | 11 # | 273 | 1.019 | 1.042 | 1.051 | 1.055 | 1.058 |
| 298 | 0.943 | 1.006 | 1.026 | 1.033 | 1.039 | 298 | 0.938 | 0.995 | 1.020 | 1.034 | 1.041 | ||
| 323 | 0.808 | 0.934 | 0.969 | 0.999 | 1.012 | 323 | 0.810 | 0.930 | 0.966 | 0.995 | 1.011 | ||
| 6 # | 273 | 1.021 | 1.044 | 1.051 | 1.057 | 1.061 | ZIF-8 | 273 | 1.015 | 1.027 | 1.045 | 1.054 | 1.060 |
| 298 | 0.867 | 0.991 | 1.004 | 1.021 | 1.031 | 298 | 0.932 | 1.011 | 1.023 | 1.030 | 1.037 | ||
| 323 | 0.819 | 0.933 | 0.972 | 0.998 | 1.012 | 323 | 0.820 | 0.902 | 0.978 | 0.994 | 1.007 | ||
| ZIF-67 | 273 | 1.013 | 1.023 | 1.037 | 1.056 | 1.065 | |||||||
| 298 | 0.944 | 1.005 | 1.021 | 1.033 | 1.043 | ||||||||
| 323 | 0.823 | 0.911 | 0.976 | 0.997 | 1.009 | ||||||||
| 金属比例 | Zn∶Co = 5∶1 | Zn∶Co = 2∶1 | Zn∶Co = 1∶1 | ||||
|---|---|---|---|---|---|---|---|
| Zn/Co-ZIFs序号 | 1# | 2# | 3# | 4# | 5# | 6# | 7# |
| C3H8吸附热/(kJ/mol ) | 21.64 | 21.81 | 21.86 | 21.80 | 22.08 | 21.98 | 21.97 |
| C3H6吸附热/(kJ/mol ) | 20.48 | 20.65 | 20.68 | 20.63 | 20.85 | 20.80 | 20.82 |
| 金属比例 | Zn∶Co = 1∶0 | Zn∶Co = 0∶1 | Zn∶Co = 1∶2 | Zn∶Co = 1∶5 | |||
| Zn/Co-ZIFs序号 | ZIF-8 | ZIF-67 | 8# | 9# | 10# | 11# | |
| C3H8吸附热/(kJ/mol ) | 21.52 | 22.51 | 22.26 | 22.30 | 22.21 | 22.14 | |
| C3H6吸附热/(kJ/mol ) | 20.21 | 21.42 | 21.08 | 21.11 | 21.02 | 20.96 | |
表4 298 K, 10-5 bar下Co/Zn-ZIFs的吸附热
Table 4 Adsorption heat of Co/Zn-ZIFs at 298 K, 10-5 bar
| 金属比例 | Zn∶Co = 5∶1 | Zn∶Co = 2∶1 | Zn∶Co = 1∶1 | ||||
|---|---|---|---|---|---|---|---|
| Zn/Co-ZIFs序号 | 1# | 2# | 3# | 4# | 5# | 6# | 7# |
| C3H8吸附热/(kJ/mol ) | 21.64 | 21.81 | 21.86 | 21.80 | 22.08 | 21.98 | 21.97 |
| C3H6吸附热/(kJ/mol ) | 20.48 | 20.65 | 20.68 | 20.63 | 20.85 | 20.80 | 20.82 |
| 金属比例 | Zn∶Co = 1∶0 | Zn∶Co = 0∶1 | Zn∶Co = 1∶2 | Zn∶Co = 1∶5 | |||
| Zn/Co-ZIFs序号 | ZIF-8 | ZIF-67 | 8# | 9# | 10# | 11# | |
| C3H8吸附热/(kJ/mol ) | 21.52 | 22.51 | 22.26 | 22.30 | 22.21 | 22.14 | |
| C3H6吸附热/(kJ/mol ) | 20.21 | 21.42 | 21.08 | 21.11 | 21.02 | 20.96 | |
| 金属比例 | Zn∶Co = 5∶1 | Zn∶Co = 2∶1 | Zn∶Co = 1∶1 | ||||
|---|---|---|---|---|---|---|---|
| Zn/Co-ZIFs序号 | 1# | 2# | 3# | 4# | 5# | 6# | 7# |
| C3H8自由能/(kJ/mol ) | 11.73 | 16.06 | 25.83 | 16.08 | 18.38 | 30.45 | 18.89 |
| C3H6自由能/(kJ/mol ) | 8.93 | 13.39 | 15.40 | 11.40 | 14.92 | 15.85 | 11.58 |
| 自由能差值/(kJ/mol ) | 2.80 | 2.67 | 10.43 | 4.68 | 3.46 | 14.60 | 7.32 |
| 金属比例 | Zn∶Co = 1∶0 | Zn∶Co = 0∶1 | Zn∶Co = 1∶2 | Zn∶Co = 1∶5 | |||
| Zn/Co-ZIFs序号 | ZIF-8 | ZIF-67 | 8# | 9# | 10# | 11# | |
| C3H8自由能/(kJ/mol ) | 27.63 | 37.96 | 26.63 | 31.80 | 26.40 | 34.41 | |
| C3H6自由能/(kJ/mol ) | 17.52 | 23.79 | 20.26 | 22.98 | 20.91 | 26.46 | |
| 自由能差值/(kJ/mol ) | 10.11 | 14.17 | 6.37 | 8.82 | 5.49 | 7.95 | |
表5 不同金属比例下C3H6、C3H8在Co/Zn-ZIFs中的扩散自由能
Table 5 Diffusion free energy of C3H6 and C3H8 in Co/Zn-ZIFs with different metal ratios
| 金属比例 | Zn∶Co = 5∶1 | Zn∶Co = 2∶1 | Zn∶Co = 1∶1 | ||||
|---|---|---|---|---|---|---|---|
| Zn/Co-ZIFs序号 | 1# | 2# | 3# | 4# | 5# | 6# | 7# |
| C3H8自由能/(kJ/mol ) | 11.73 | 16.06 | 25.83 | 16.08 | 18.38 | 30.45 | 18.89 |
| C3H6自由能/(kJ/mol ) | 8.93 | 13.39 | 15.40 | 11.40 | 14.92 | 15.85 | 11.58 |
| 自由能差值/(kJ/mol ) | 2.80 | 2.67 | 10.43 | 4.68 | 3.46 | 14.60 | 7.32 |
| 金属比例 | Zn∶Co = 1∶0 | Zn∶Co = 0∶1 | Zn∶Co = 1∶2 | Zn∶Co = 1∶5 | |||
| Zn/Co-ZIFs序号 | ZIF-8 | ZIF-67 | 8# | 9# | 10# | 11# | |
| C3H8自由能/(kJ/mol ) | 27.63 | 37.96 | 26.63 | 31.80 | 26.40 | 34.41 | |
| C3H6自由能/(kJ/mol ) | 17.52 | 23.79 | 20.26 | 22.98 | 20.91 | 26.46 | |
| 自由能差值/(kJ/mol ) | 10.11 | 14.17 | 6.37 | 8.82 | 5.49 | 7.95 | |
| 金属比例 | MOF分子模型 | |||
|---|---|---|---|---|
| Zn∶Co=1∶0 | ZIF-8 | 4.843×10-12 | 3.376×10-10 | 69.51 |
| Zn∶Co =5∶1 | 1# | 3.143×10-10 | 7.013×10-9 | 22.31 |
| Zn∶Co =2∶1 | 2# | 4.797×10-10 | 1.089×10-9 | 2.27 |
| 3# | 9.133×10-12 | 5.503×10-10 | 60.25 | |
| 4# | 6.958×10-10 | 2.393×10-9 | 3.44 | |
| Zn∶Co =1∶1 | 5# | 1.624×10-10 | 4.795×10-10 | 2.95 |
| 6# | 1.445×10-12 | 3.910×10-10 | 270.59 | |
| 7# | 1.710×10-10 | 3.282×10-9 | 19.19 | |
| Zn∶Co =1∶2 | 8# | 6.730×10-12 | 8.213×10-11 | 12.20 |
| 9# | 8.065×10-13 | 2.918×10-11 | 36.18 | |
| 10# | 7.068×10-12 | 6.538×10-11 | 9.25 | |
| Zn∶Co =1∶5 | 11# | 3.123×10-13 | 7.896×10-12 | 25.28 |
| Zn∶Co =0∶1 | ZIF-67 | 2.521×10-13 | 4.946×10-11 | 196.19 |
表6 不同Co/Zn-ZIFs分子模型中C3H6、C3H8自扩散系数
Table 6 Self-diffusion coefficients of C3H6 and C3H8 in different Co/Zn-ZIFs molecular models
| 金属比例 | MOF分子模型 | |||
|---|---|---|---|---|
| Zn∶Co=1∶0 | ZIF-8 | 4.843×10-12 | 3.376×10-10 | 69.51 |
| Zn∶Co =5∶1 | 1# | 3.143×10-10 | 7.013×10-9 | 22.31 |
| Zn∶Co =2∶1 | 2# | 4.797×10-10 | 1.089×10-9 | 2.27 |
| 3# | 9.133×10-12 | 5.503×10-10 | 60.25 | |
| 4# | 6.958×10-10 | 2.393×10-9 | 3.44 | |
| Zn∶Co =1∶1 | 5# | 1.624×10-10 | 4.795×10-10 | 2.95 |
| 6# | 1.445×10-12 | 3.910×10-10 | 270.59 | |
| 7# | 1.710×10-10 | 3.282×10-9 | 19.19 | |
| Zn∶Co =1∶2 | 8# | 6.730×10-12 | 8.213×10-11 | 12.20 |
| 9# | 8.065×10-13 | 2.918×10-11 | 36.18 | |
| 10# | 7.068×10-12 | 6.538×10-11 | 9.25 | |
| Zn∶Co =1∶5 | 11# | 3.123×10-13 | 7.896×10-12 | 25.28 |
| Zn∶Co =0∶1 | ZIF-67 | 2.521×10-13 | 4.946×10-11 | 196.19 |
| 1 | Jin D Y, Tu Y M, Zhang Z D, et al. Preparation of chitosan-copper material and its application on propylene-propane adsorption separation[J]. Chemical Papers, 2024, 78(8): 4751-4765. |
| 2 | Sato S, Iwasaki T, Kajiro H, et al. Faster sorption of propylene compared to propane using an elastic layer-structured metal-organic framework (ELM-11)[J]. Langmuir, 2024, 40(11): 5850-5857. |
| 3 | Ignatusha P, Lin H Q, Kapuscinsky N, et al. Membrane separation technology in direct air capture[J]. Membranes, 2024, 14(2): 30. |
| 4 | Ahmad U, Ullah S, Rehman A, et al. ZIF-8 composites for the removal of wastewater pollutants[J]. ChemistrySelect, 2024, 9(24): e202401719. |
| 5 | Cadiau A, Adil K, Bhatt P M, et al. A metal-organic framework-based splitter for separating propylene from propane[J]. Science, 2016, 353(6295): 137-140. |
| 6 | Zeng H, Xie M, Wang T, et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures[J]. Nature, 2021, 595(7868): 542-548. |
| 7 | Tian Y J, Deng C H, Zhao L, et al. Pore configuration control in hybrid azolate ultra-microporous frameworks for sieving propylene from propane[J]. Nature Chemistry, 2025, 17(1): 141-147. |
| 8 | Ronte A, Wagle P, Mahmodi G, et al. High-flux ZIF-8 membranes on ZnO-coated supports for propane/propylene separation[J]. Energy & Fuels, 2023, 37(12): 8456-8464. |
| 9 | Pan Y C, Lai Z P. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37): 10275-10277. |
| 10 | Kwon H T, Jeong H K, Lee A S, et al. Defect-induced ripening of zeolitic-imidazolate framework ZIF-8 and its implication to vapor-phase membrane synthesis[J]. Chemical Communications, 2016, 52(78): 11669-11672. |
| 11 | Zhao Y L, Wei Y Y, Lyu L X, et al. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation[J]. Journal of the American Chemical Society, 2020, 142(50): 20915-20919. |
| 12 | Yang J J, Chen D Y, Cao Y T, et al. pH-responsive bimetallic MOFs ZIF-8@ZIF-67 for enhanced antibacterial activity[J]. Chemistry Select, 2024, 9(4): e202304908. |
| 13 | Tran N T, Kwon H T, Kim W S, et al. Counter-diffusion-based in situ synthesis of ZIF-67 membranes for propylene/propane separation[J]. Materials Letters, 2020, 271: 127777. |
| 14 | Tran N T, Kim J, Othman M R. Microporous ZIF-8 and ZIF-67 membranes grown on mesoporous alumina substrate for selective propylene transport[J]. Separation and Purification Technology, 2020, 233: 116026. |
| 15 | Shu L, Peng Y, Zhu C Y, et al. Metal-organic framework membranes with scale-like structure for efficient propylene/propane separation[J]. Nature Communications, 2024, 15(1): 10437. |
| 16 | Wang X, Ma Q, Cheng J J, et al. Crystallization-controlled defect minimization of a ZIF-67 membrane for the robust separation of propylene and propane[J]. Journal of Membrane Science, 2022, 664: 121072. |
| 17 | Ghadiri M, Aroujalian A, Pazani F, et al. Tailoring filler/gas vs. filler/polymer interactions via optimizing Co/Zn ratio in bimetallic ZIFs and decorating on GO nanosheets for enhanced CO2 separation[J]. Separation and Purification Technology, 2024, 330: 125315. |
| 18 | Hou Q Q, Zhou S, Wei Y Y, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020: jacs.0c02181. |
| 19 | Mohamed A M, Sayed D M, Allam N K. Optimized fabrication of bimetallic ZnCo metal-organic framework at NiCo-layered double hydroxides for multiple storage and capability synergy all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(13): 16755-16767. |
| 20 | Krokidas P, Castier M, Moncho S, et al. ZIF-67 framework: a promising new candidate for propylene/propane separation. Experimental data and molecular simulations[J]. The Journal of Physical Chemistry C, 2016, 120(15): 8116-8124. |
| 21 | Formalik F, Shi K H, Joodaki F, et al. Exploring the structural, dynamic, and functional properties of metal-organic frameworks through molecular modeling[J]. Advanced Functional Materials, 2024, 34(43): 2308130. |
| 22 | Verploegh R J, Nair S, Sholl D S. Temperature and loading-dependent diffusion of light hydrocarbons in ZIF-8 as predicted through fully flexible molecular simulations[J]. Journal of the American Chemical Society, 2015, 137(50): 15760-15771. |
| 23 | Cheng Y D, Datta S J, Zhou S, et al. Advances in metal-organic framework-based membranes[J]. Chemical Society Reviews, 2022, 51(19): 8300-8350. |
| 24 | Wang V, Xu N, Liu J C, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code[J]. Computer Physics Communications, 2021, 267: 108033. |
| 25 | Guo J X, Zheng Y, Hu Z P, et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst[J]. Nature Energy, 2023, 8: 264-272. |
| 26 | Vinnacombe-Willson G A, Conti Y, Stefancu A, et al. Direct bottom-up in situ growth: a paradigm shift for studies in wet-chemical synthesis of gold nanoparticles[J]. Chemical Reviews, 2023, 123(13): 8488-8529. |
| 27 | Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85. |
| 28 | Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09: revision D.01[CP]. Wallingford CT: Gaussian Inc., 2013. |
| 29 | Wan J D, Wang R, Liu Z X, et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries[J]. ACS Nano, 2023, 17(2): 1610-1621. |
| 30 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
| 31 | Dubbeldam D, Calero S, Ellis D E, et al. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials[J]. Molecular Simulation, 2016, 42(2): 81-101. |
| 32 | Hertäg L, Bux H, Caro J, et al. Diffusion of CH4 and H2 in ZIF-8[J]. Journal of Membrane Science, 2011, 377(1/2): 36-41. |
| 33 | Jaradat A, Al-Salman R, Obeidat A. Self-diffusion and shear viscosity of pure 1-alkanol unary system: molecular dynamics simulation and review of experimental data[J]. RSC Advances, 2024, 14(32): 22947-22961. |
| 34 | van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
| 35 | Bhat V, Callaway C P, Risko C. Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials[J]. Chemical Reviews, 2023, 123(12): 7498-7547. |
| 36 | Ahmad K, Rizzi A, Capelli R, et al. Enhanced-sampling simulations for the estimation of ligand binding kinetics: current status and perspective[J]. Frontiers in Molecular Biosciences, 2022, 9: 899805. |
| 37 | Marin-Rimoldi E, Yancey A D, Shiflett M B, et al. Adsorption of difluoromethane (HFC-32) and pentafluoroethane (HFC-125) and their mixtures in silicalite-1: an experimental and Monte Carlo simulation study[J]. The Journal of Chemical Physics, 2024, 161(7): 074701. |
| 38 | Van Speybroeck V, Bocus M, Cnudde P, et al. operando modeling of zeolite-catalyzed reactions using first-principles molecular dynamics simulations[J]. ACS Catalysis, 2023, 13(17): 11455-11493. |
| 39 | Cai Y L, Gao P J, Li J H, et al. Pore modulation of hydrogen-bonded organic frameworks for efficient separation of propylene[J]. Angewandte Chemie International Edition, 2023, 62(37): e202308579. |
| 40 | 王玉杰, 李申辉, 赵之平. M-MOF-74 吸附分离 H2/He 混合物的分子模拟研究[J]. 化工学报, 2022, 73(10): 4507-4517. |
| Wang Y J, Li S H, Zhao Z P. Molecular simulation study on adsorption and separation of H2/He mixtures by M-MOF-74[J]. CIESC Journal, 2022, 73(10): 4507-4517. |
| [1] | 徐智超, 俞镇东, 吴昊峰, 吴沛文, 武洪翔, 巢艳红, 朱文帅, 刘植昌, 徐春明. 富酸位13X分子筛的制备及其超深度吸附脱除生物柴油中硫醇[J]. 化工学报, 2025, 76(5): 2198-2208. |
| [2] | 陶春珲, 李印辉, 傅钰, 段然, 赵泽一, 唐羽丰, 张罡, 马和平. 不同吸附剂对低浓度Kr气的选择性吸附与纯化[J]. 化工学报, 2025, 76(5): 2358-2366. |
| [3] | 陈建兵, 常昊, 高明, 邢兵, 张磊, 刘奇磊. 基于反应模板与分子动力学的胺基相变吸收剂分相预测方法[J]. 化工学报, 2025, 76(5): 2387-2396. |
| [4] | 张越, 刘佳鑫, 马敬, 刘毅. 金属有机骨架膜应用于海水提铀研究进展[J]. 化工学报, 2025, 76(5): 2087-2100. |
| [5] | 郭彭涛, 王婷, 薛波, 应允攀, 刘大欢. 用于CH4/N2分离的多吸附位点超微孔MOF[J]. 化工学报, 2025, 76(5): 2304-2312. |
| [6] | 唐磊, 王振菲, 李聪利, 杨佳辉, 郑浩, 石琪, 董晋湘. Co-MOF-74和Mg-MOF-74的CO工作吸附容量及操作条件[J]. 化工学报, 2025, 76(5): 2279-2293. |
| [7] | 李紫鹃, 谭晓艳, 吴永盛, 杨陈怡, 陈红, 毕小刚, 刘捷, 喻发全. 分子模拟研究三维扭曲催化芳烃-降冰片烯环化聚合物膜的CO2/N2分离机理[J]. 化工学报, 2025, 76(5): 2348-2357. |
| [8] | 李艳, 雷美丽, 李鑫钢. 基于分离性能的顺序式模拟移动床结构调控策略[J]. 化工学报, 2025, 76(5): 2219-2229. |
| [9] | 巴雅琪, 吴涛, 邸安頔, 陆安慧. 多孔炭材料用于低碳烃分离的研究进展[J]. 化工学报, 2025, 76(5): 2136-2157. |
| [10] | 谈朋, 李雪梅, 刘晓勤, 孙林兵. 基于柔性MOFs的磁响应复合材料及其丙烯吸附性能研究[J]. 化工学报, 2025, 76(5): 2230-2240. |
| [11] | 胡嘉朗, 姜明源, 金律铭, 张永刚, 胡鹏, 纪红兵. 机器学习辅助MOFs高通量计算筛选及气体分离研究进展[J]. 化工学报, 2025, 76(5): 1973-1996. |
| [12] | 马瑞洁, 黄子轩, 关雪倩, 陈光进, 刘蓓. ZIF-8/DMPU浆液分离C2H6/ CH4混合气研究[J]. 化工学报, 2025, 76(5): 2262-2269. |
| [13] | 林纬, 杜建, 姚晨, 朱家豪, 汪威, 郑小涛, 徐建民, 喻九阳. 电化学水软化过程中离子输运与成核机理研究[J]. 化工学报, 2025, 76(4): 1788-1799. |
| [14] | 赵俊德, 周爱国, 陈彦霖, 郑家乐, 葛天舒. 吸附法CO2直接空气捕集技术能耗现状[J]. 化工学报, 2025, 76(4): 1375-1390. |
| [15] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号