| 1 |
窦立荣, 孙龙德, 吕伟峰, 等. 全球二氧化碳捕集、利用与封存产业发展趋势及中国面临的挑战与对策[J].石油勘探与开发, 2023, 50(5): 1083-1096.
|
|
Dou L R, Sun L D, Lyu W F, et al. Trend of global carbon dioxide capture, utilization and storage industry and challenges and countermeasures in China[J]. Petroleum Exploration and Development, 2023, 50(5): 1083-1096.
|
| 2 |
向晟, 刘奇磊, 张磊, 等. 基于反应动力学的计算机辅助碳捕集有机胺溶剂设计[J]. 清华大学学报(自然科学版), 2024, 64(3): 520-527.
|
|
Xiang S, Liu Q L, Zhang L, et al. Computer-aided design of organic amine solvents for carbon capture based on reaction kinetics[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(3): 520-527.
|
| 3 |
沈海燕, 李芳芹, 任建兴, 等. 化学吸收法捕集二氧化碳的研究进展[J]. 无机盐工业, 2024, 56(5): 11-19, 44.
|
|
Shen H Y, Li F Q, Ren J X, et al. Research progress on chemical absorption method for capturing carbon dioxide[J]. Inorganic Chemicals Industry, 2024, 56(5): 11-19, 44.
|
| 4 |
张帅, 郅晓, 石信超, 等. 有机胺类CO2捕集吸收剂研究进展[J]. 应用化工, 2024, 53(1): 172-177.
|
|
Zhang S, Zhi X, Shi X C, et al. Research progress of organic amines for CO2 capture and absorption[J]. Applied Chemical Industry, 2024, 53(1): 172-177.
|
| 5 |
杨菲, 刘苗苗, 陆诗建, 等. 适用于烟气CO2捕集的相变吸收剂研究进展[J]. 低碳化学与化工, 2023, 48(2): 113-120.
|
|
Yang F, Liu M M, Lu S J, et al. Research progress of phase change absorbents for CO2 capture in flue gas[J]. Low-Carbon Chemistry and Chemical Engineering, 2023, 48(2): 113-120.
|
| 6 |
Jin X H, Fang J W, Ma Q, et al. Effect of amine properties on developing CO2 phase change absorbents by means of cosolvent effect[J]. Separation and Purification Technology, 2022, 289: 120630.
|
| 7 |
Wang N, Peng Z Q, Gao H X, et al. New insight and evaluation of secondary amine/N-butanol biphasic solutions for CO2 capture: equilibrium solubility, phase separation behavior, absorption rate, desorption rate, energy consumption and ion species[J]. Chemical Engineering Journal, 2022, 431: 133912.
|
| 8 |
胡彦陇, 王强, 胡定凯, 等. MDEA基相变吸收剂筛选及其CO2捕集性能[J]. 洁净煤技术, 2024, 30(6): 158-170.
|
|
Hu Y L, Wang Q, Hu D K, et al. Selection of MDEA based phase change absorbers and carbon dioxide capture performance[J]. Clean Coal Technology, 2024, 30(6): 158-170.
|
| 9 |
杨怡霜, 熊厚盛, 解新安, 等. 分子动力学模拟研究不同乳化剂稳定的纳米乳液油/水界面行为[J]. 食品科学, 2024, 45(23): 35-45.
|
|
Yang Y S, Xiong H S, Xie X A, et al. Molecular dynamics simulation to study the oil/water interfacial behavior of nanoemulsions stabilized by different emulsifiers[J]. Food Science, 2024, 45(23): 35-45.
|
| 10 |
Jiang W F, Gao G, Gao X Y, et al. Water effect on CO2 absorption mechanism and phase change behavior in [N1111] [Gly]/EtOH anhydrous biphasic absorbent: in density functional theory and molecular dynamics view[J]. Chemical Engineering Journal, 2024, 491: 151702.
|
| 11 |
Wang C S, Zhu J Z, Xiao G K, et al. Effect of water on CO2 capture and phase change in non-aqueous 1, 4-butanediamine/ethylene glycol biphasic absorbents: role of hydrogen bond competition[J]. Chemical Engineering Journal, 2024, 496: 154231.
|
| 12 |
Lv B, Guo B, Zhou Z, et al. Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes[J]. Environmental Science & Technology, 2015, 49(17): 10728-10735.
|
| 13 |
符乐, 杨阳, 徐文青, 等. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080.
|
|
Fu L, Yang Y, Xu W Q, et al. Research progress in CO2 capture technology using novel biphasic organic amine absorbent[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080.
|
| 14 |
Abraham M J, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25.
|
| 15 |
Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.
|
| 16 |
Jorgensen W L, Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin[J]. Journal of the American Chemical Society, 1988, 110(6): 1657-1666.
|
| 17 |
Kaminski G A, Friesner R A, Tirado-Rives J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides[J]. The Journal of Physical Chemistry B, 2001, 105(28): 6474-6487.
|
| 18 |
Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164.
|
| 19 |
Jorgensen W L, Tirado-Rives J. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6665-6670.
|
| 20 |
Dodda L S, Vilseck J Z, Tirado-Rives J, et al. 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3864-3870.
|
| 21 |
Dodda L S, Cabeza de Vaca I, Tirado-Rives J, et al. LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336.
|
| 22 |
Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. 1984, 81(8): 3684-3690.
|
| 23 |
RDKit: Open-source cheminformatics[EB/OL]. .
|
| 24 |
Hunter J D. Matplotlib: a 2D graphics environment[J]. Computing in Science & Engineering, 2007, 9(3): 90-95.
|
| 25 |
O'Boyle N M, Banck M, James C A, et al. Open Babel: an open chemical toolbox[J]. Journal of Cheminformatics, 2011, 3(1): 33.
|
| 26 |
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|