化工学报 ›› 2025, Vol. 76 ›› Issue (6): 2791-2801.DOI: 10.11949/0438-1157.20241196
收稿日期:2024-10-28
修回日期:2024-11-23
出版日期:2025-06-25
发布日期:2025-07-09
通讯作者:
周利
作者简介:熊敏(1998—),女,硕士研究生,xiongmin9909@126.com
基金资助:
Min XIONG(
), Dongmei LIU, Zhichao WANG, Li ZHOU(
), Xu JI
Received:2024-10-28
Revised:2024-11-23
Online:2025-06-25
Published:2025-07-09
Contact:
Li ZHOU
摘要:
氨是全球生产量最大的无机化学品之一,而绿氨工艺主要依赖于利用太阳能、风能等可再生能源发电进行水电解以制备绿氢,随后在高温高压条件下,采用铁基催化剂促进绿氢与氮气的催化反应,从而合成绿氨。然而,可再生能源发电固有的间歇性和季节性,直接导致了合成氨原料氢气供应的不稳定,绿氨生产无法持续在满负荷下运行。因此,为了使绿氨生产能够有效地适应这种波动的能源供给情况,需要开发出一套灵活的操作策略以确保生产的连续性和稳定性。通过结合机理模型和代理模型,构建一个包含电解水制氢、气体压缩、合成氨反应以及产物分离等关键工艺步骤在内的数学模型,深入分析了绿氨生产系统的稳态运行范围以及操作灵活性,重点分析了部分负荷下H2/N2、惰性气体含量等操作参数变化对整个绿氨生产系统的影响。结果表明,通过对H2/N2和惰性气体含量这些关键参数进行适当调整,可以在30%~100%的负荷范围内实现绿氨的柔性生产。
中图分类号:
熊敏, 刘冬妹, 王智超, 周利, 吉旭. 变负荷条件下绿氨生产操作参数的调控与优化[J]. 化工学报, 2025, 76(6): 2791-2801.
Min XIONG, Dongmei LIU, Zhichao WANG, Li ZHOU, Xu JI. Optimization and adjustment of operating parameters for green ammonia production under variable load conditions[J]. CIESC Journal, 2025, 76(6): 2791-2801.
| 组分 | Tc/K | Pc×10-6/Pa | ω |
|---|---|---|---|
| H2 | 33.2 | 1.297 | -0.220 |
| N2 | 126.2 | 3.394 | 0.040 |
| NH3 | 405.6 | 11.280 | 0.250 |
| Ar | 150.8 | 4.874 | -0.004 |
表1 H2、N2、NH3和Ar的物性数据
Table 1 Physical properties data for H2, N2, NH3 and Ar
| 组分 | Tc/K | Pc×10-6/Pa | ω |
|---|---|---|---|
| H2 | 33.2 | 1.297 | -0.220 |
| N2 | 126.2 | 3.394 | 0.040 |
| NH3 | 405.6 | 11.280 | 0.250 |
| Ar | 150.8 | 4.874 | -0.004 |
| 输入变量 | 下限 | 上限 |
|---|---|---|
| 550 | 11000 | |
| 2500 | 50000 | |
| 200 | 18000 | |
| 20 | 200 | |
| 520 | 700 | |
| 100 | 200 | |
| 1 | 15 |
表2 催化剂床层的输入变量范围
Table 2 Domains of the input variables for the catalyst bed
| 输入变量 | 下限 | 上限 |
|---|---|---|
| 550 | 11000 | |
| 2500 | 50000 | |
| 200 | 18000 | |
| 20 | 200 | |
| 520 | 700 | |
| 100 | 200 | |
| 1 | 15 |
| 输出变量 | RMSE | R2 |
|---|---|---|
| 1.14×10-2 | 0.939 | |
| 2.40 |
表3 催化剂床层模型的验证结果
Table 3 Validation results of the catalyst bed model
| 输出变量 | RMSE | R2 |
|---|---|---|
| 1.14×10-2 | 0.939 | |
| 2.40 |
| 输入变量 | 下限 | 上限 |
|---|---|---|
| 200 | 3800 | |
| 50 | 1200 | |
| 150 | 1100 | |
| 0.50 | 5.00 | |
| 100 | 200 | |
| 263 | 283 |
表4 分离单元的输入变量范围
Table 4 Domains of the input variables for the separation unit
| 输入变量 | 下限 | 上限 |
|---|---|---|
| 200 | 3800 | |
| 50 | 1200 | |
| 150 | 1100 | |
| 0.50 | 5.00 | |
| 100 | 200 | |
| 263 | 283 |
| 输出变量 | RMSE | R2 |
|---|---|---|
| 2.11×10-2 | 0.979 | |
| 5.16×10-3 | ||
| 1.21×10-1 | ||
| 7.53×10-4 | ||
| 6.27×10-3 | ||
| 1.83×10-3 | ||
| 5.88×10-2 | ||
| 1.48×10-4 |
表5 分离单元模型的验证结果
Table 5 Validation results of the separation unit
| 输出变量 | RMSE | R2 |
|---|---|---|
| 2.11×10-2 | 0.979 | |
| 5.16×10-3 | ||
| 1.21×10-1 | ||
| 7.53×10-4 | ||
| 6.27×10-3 | ||
| 1.83×10-3 | ||
| 5.88×10-2 | ||
| 1.48×10-4 |
| [1] | Su C W, Pang L D, Qin M, et al. The spillover effects among fossil fuel, renewables and carbon markets: evidence under the dual dilemma of climate change and energy crises[J]. Energy, 2023, 274: 127304. |
| [2] | Li Y M, Alharthi M, Ahmad I, et al. Nexus between renewable energy, natural resources and carbon emissions under the shadow of transboundary trade relationship from South East Asian economies[J]. Energy Strategy Reviews, 2022, 41: 100855. |
| [3] | Rissman J, Bataille C, Masanet E, et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070[J]. Applied Energy, 2020, 266: 114848. |
| [4] | Olabi A G, Abdelkareem M A. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. |
| [5] | Liu B T, Yuan Z H. Multistage distributionally robust design of a renewable source processing network under uncertainty[J]. Industrial & Engineering Chemistry Research, 2021, 60(21): 7883-7903. |
| [6] | Mahmoud M, Ramadan M, Olabi A G, et al. A review of mechanical energy storage systems combined with wind and solar applications[J]. Energy Conversion and Management, 2020, 210: 112670. |
| [7] | Aftab W, Usman A, Shi J M, et al. Phase change material-integrated latent heat storage systems for sustainable energy solutions[J]. Energy & Environmental Science, 2021, 14(8): 4268-4291. |
| [8] | Jiang Y H, Kang L X, Liu Y Z. Multi-objective design optimization of a multi-type battery energy storage in photovoltaic systems[J]. Journal of Energy Storage, 2021, 39: 102604. |
| [9] | Mehrpooya M, Pakzad P. Introducing a hybrid mechanical-chemical energy storage system: process development and energy/exergy analysis[J]. Energy Conversion and Management, 2020, 211: 112784. |
| [10] | Meng W L, Wang D L, Zhou H R, et al. Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: process modeling, system analysis, and techno-economic evaluation[J]. Energy, 2023, 278: 127537. |
| [11] | Meng W L, Wang D L, Zhou H R, et al. Design and analysis for chemical process electrification based on renewable electricity: coal-to-methanol process as a case study[J]. Energy Conversion and Management, 2023, 292: 117424. |
| [12] | Huang R X, Kang L X, Liu Y Z. Renewable synthetic methanol system design based on modular production lines[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112379. |
| [13] | Choe C, Kim H, Lim H. Feasibility study of power-to-gas as simultaneous renewable energy storage and CO2 utilization: direction toward economic viability of synthetic methane production[J]. Sustainable Energy Technologies and Assessments, 2023, 57: 103261. |
| [14] | 曾悦, 王月, 张学瑞, 等. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
| Zeng Y, Wang Y, Zhang X R, et al. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. | |
| [15] | 黄富林, 田烨玮, 师蓉. 绿氨的生产和发展趋势[J]. 肥料与健康, 2023, 50(5): 1-7. |
| Huang F L, Tian Y W, Shi R. Production and development trends of green ammonia[J]. Fertilizer & Health, 2023, 50(5): 1-7. | |
| [16] | Wang Q R, Guo J P, Chen P. Recent progress towards mild-condition ammonia synthesis[J]. Journal of Energy Chemistry, 2019, 36: 25-36. |
| [17] | Fahr S, Schiedeck M, Schwarzhuber J, et al. Design and thermodynamic analysis of a large-scale ammonia reactor for increased load flexibility[J]. Chemical Engineering Journal, 2023, 471: 144612. |
| [18] | Armijo J, Philibert C. Flexible production of green hydrogen and ammonia from variable solar and wind energy: case study of Chile and Argentina[J]. International Journal of Hydrogen Energy, 2020, 45(3): 1541-1558. |
| [19] | Wu Y, Zhao T T, Tang S, et al. Research on design and multi-frequency scheduling optimization method for flexible green ammonia system[J]. Energy Conversion and Management, 2024, 300: 117976. |
| [20] | Quintero-Masselski C, Portha J F, Falk L. Conception and optimization of an ammonia synthesis superstructure for energy storage[J]. Chemical Engineering Research and Design, 2022, 177: 826-842. |
| [21] | Khademi M H, Sabbaghi R S. Comparison between three types of ammonia synthesis reactor configurations in terms of cooling methods[J]. Chemical Engineering Research and Design, 2017, 128: 306-317. |
| [22] | Ostuni R, Zardi F. Method for load regulation of an ammonia plant: US9463983[P]. 2016-10-11. |
| [23] | Nayak-Luke R, Bañares-Alcántara R, Wilkinson I. “Green” ammonia: impact of renewable energy intermittency on plant sizing and levelized cost of ammonia[J]. Industrial & Engineering Chemistry Research, 2018, 57(43): 14607-14616. |
| [24] | Verleysen K, Parente A, Contino F. How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)[J]. Energy, 2021, 232: 121016. |
| [25] | Cheema I I, Krewer U. Operating envelope of Haber-Bosch process design for power-to-ammonia[J]. RSC Advances, 2018, 8(61): 34926-34936. |
| [26] | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
| Ji X, Zhou B X, He G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
| [27] | Sánchez M, Amores E, Abad D, et al. Aspen Plus model of an alkaline electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3916-3929. |
| [28] | López-Paniagua I, Rodríguez-Martín J, Sánchez-Orgaz S, et al. Step by step derivation of the optimum multistage compression ratio and an application case[J]. Entropy, 2020, 22(6): 678. |
| [29] | 中国寰球化学工程公司, 中国石油化工总公司, 兰州石油化工设计院. 氮肥工艺设计手册: 气体压缩、氨合成、甲醇合成[M]. 北京: 化学工业出版社, 1989: 8-56. |
| China Huanqiu Contracting & Engineering Limited Company, Group Sinopec, PetroChina Lanzhou Petrol-Chemical Industry Company. Nitrogen Fertilizer Process Design Manual: Gas Compression, Ammonia Synthesis, Methanol Synthesis[M]. Beijing: Chemical Industry Press, 1989: 8-56. | |
| [30] | Bhosekar A, Ierapetritou M. Advances in surrogate based modeling, feasibility analysis, and optimization: a review[J]. Computers & Chemical Engineering, 2018, 108: 250-267. |
| [31] | Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
| [32] | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
| [33] | 陈钟秀, 顾飞燕, 胡望明. 化工热力学[M]. 3版. 北京: 化学工业出版社, 2012: 306-307. |
| Chen Z X, Gu F Y, Hu W Y. Chemical Engineering Thermodynamics[M]. 3rd ed. Beijing: Chemical Industry Press, 2012: 306-307. | |
| [34] | Sawant M R, Patwardhan A W, Gaikar V G, et al. Phase equilibria analysis of the binary N2-NH3 and H2-NH3 systems and prediction of ternary phase equilibria[J]. Fluid Phase Equilibria, 2006, 239(1): 52-62. |
| [1] | 密晓光, 孙国刚, 程昊, 张晓慧. 印刷电路板式天然气冷却器性能仿真模型和验证[J]. 化工学报, 2025, 76(S1): 426-434. |
| [2] | 段浩磊, 陈浩远, 梁坤峰, 王林, 陈彬, 曹勇, 张晨光, 李硕鹏, 朱登宇, 何亚茹, 杨大鹏. 纯电动车热管理系统低GWP工质替代方案性能分析与综合评价[J]. 化工学报, 2025, 76(S1): 54-61. |
| [3] | 张文锋, 郭玮, 张新玉, 曹昊敏, 丁国良. 铝管铝翅片换热器模型开发及软件实现[J]. 化工学报, 2025, 76(S1): 84-92. |
| [4] | 王俊鹏, 冯佳琪, 张恩搏, 白博峰. 曲折式与阵列式迷宫阀芯结构内流动与空化特性研究[J]. 化工学报, 2025, 76(S1): 93-105. |
| [5] | 臧子晴, 李修真, 谈莹莹, 刘晓庆. 分凝器对两级分离自复叠制冷循环特性影响研究[J]. 化工学报, 2025, 76(S1): 17-25. |
| [6] | 赵子祥, 段钟弟, 孙浩然, 薛鸿祥. 大温差两相流动诱导水锤冲击的数值模型[J]. 化工学报, 2025, 76(S1): 170-180. |
| [7] | 黄灏, 王文, 贺隆坤. LNG船薄膜型液货舱预冷过程模拟与分析[J]. 化工学报, 2025, 76(S1): 187-194. |
| [8] | 汪思远, 刘国强, 熊通, 晏刚. 窗式空调器轴流风机的风速非均匀分布特性及其对冷凝器流路优化设计的影响规律[J]. 化工学报, 2025, 76(S1): 205-216. |
| [9] | 曹庆泰, 郭松源, 李建强, 蒋赞, 汪彬, 耑锐, 吴静怡, 杨光. 负过载下多孔隔板对液氧贮箱蓄液性能的影响研究[J]. 化工学报, 2025, 76(S1): 217-229. |
| [10] | 孙九春, 桑运龙, 王海涛, 贾浩, 朱艳. 泥水盾构仓体内射流对泥浆输送特性影响研究[J]. 化工学报, 2025, 76(S1): 246-257. |
| [11] | 何婷, 黄舒阳, 黄坤, 陈利琼. 基于余热利用的天然气化学吸收脱碳-高温热泵耦合流程研究[J]. 化工学报, 2025, 76(S1): 297-308. |
| [12] | 卓森庆, 陈华, 陈伟, 尚彬, 刘恒恒, 古汤汤, 白韡, 王龙炎, 曹昊敏, 丁国良. 多联式空调系统APF性能仿真的模型开发与软件实现[J]. 化工学报, 2025, 76(S1): 370-376. |
| [13] | 张涵川, 尚超, 吕文祥, 黄德先, 张亚宁. 基于无监督时序聚类的催化裂化装置工况划分识别与产率预测方法[J]. 化工学报, 2025, 76(6): 2781-2790. |
| [14] | 胡家玮, 王聪, 刘美婧. 一种抑制隧道排水管道中结晶体形成的双层阻垢疏水涂层[J]. 化工学报, 2025, 76(6): 3053-3072. |
| [15] | 何永宁, 曹文良, 王苏澳, 赵希航, 邢林芬, 吴学红. 低GWP工质高温热泵系统应用研究[J]. 化工学报, 2025, 76(6): 3009-3017. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号