| [1] |
郑远扬, 高少立, 袁璞. 催化裂化装置的动态模型: Ⅰ. 提升管反应器的动态模型和动力学参数的估计[J]. 石油炼制与化工, 1986, 17(2): 23-30.
|
|
Zheng Y Y, Gao S L, Yuan P. Dynamic model of catalytic cracking unit: Ⅰ. Dynamic model of riser reactor and estimation of kinetic parameters[J]. Petroleum Processing and Petrochemicals, 1986, 17(2): 23-30.
|
| [2] |
郑远扬, 高少立. 催化裂化装置的动态模型(Ⅱ)提升管反应器的集中参数模型[J]. 石油炼制与化工, 1986, 17(4): 67-71.
|
|
Zheng Y Y, Gao S L. Dynamic model of catalytic cracking unit (Ⅱ) lumped parameter model of riser reactor[J]. Petroleum Processing and Petrochemicals, 1986, 17(4): 67-71.
|
| [3] |
郑远扬, 高少立. 催化裂化装置的动态模型: Ⅲ. 两段再生器的动态模型和动力学参数估计[J]. 石油炼制与化工, 1986, 17(5): 45-49.
|
|
Zheng Y Y, Gao S L. Dynamic model of catalytic cracking unit Ⅲ. Dynamic model of two-stage regenerator and estimation of dynamic parameters[J]. Petroleum Processing and Petrochemicals, 1986, 17(5): 45-49.
|
| [4] |
Zheng Y Y. Dynamic modeling and simulation of a catalytic cracking unit[J]. Computers & Chemical Engineering, 1994, 18(1): 39-44.
|
| [5] |
陈玉石. FCCU反应再生部分动态建模与仿真系统研究[D]. 厦门: 厦门大学, 2007.
|
|
Chen Y S. Research on dynamic modeling and simulation system of FCCU reaction regeneration part[D]. Xiamen: Xiamen University, 2007.
|
| [6] |
邵帅. R2R型催化裂化装置反-再系统的建模与动态仿真[D]. 北京: 北京化工大学, 2008.
|
|
Shao S. Modeling and dynamic simulation of reaction-regeneration system in R2R catalytic cracking unit[D]. Beijing: Beijing University of Chemical Technology, 2008.
|
| [7] |
Radu S, Ciuparu D. Modelling and simulation of an industrial fluid catalytic cracking unit[J]. Revista de Chimie, 2014, 65(1): 113-119.
|
| [8] |
Singh B, Sahu S, Dimri N, et al. Seventeen-lump model for the simulation of an industrial fluid catalytic cracking unit (FCCU)[J]. Sādhanā, 2017, 42(11): 1965-1978.
|
| [9] |
Orazbayev B, Kozhakhmetova D, Wójtowicz R, et al. Modeling of a catalytic cracking in the gasoline production installation with a fuzzy environment[J]. Energies, 2020, 13(18): 4736.
|
| [10] |
Ni P, Liu B, He G. An online optimization strategy for a fluid catalytic cracking process using a case-based reasoning method based on big data technology[J]. RSC Advances, 2021, 11(46): 28557-28564.
|
| [11] |
Li T Y, Long J, Zhao L, et al. A bilevel data-driven framework for robust optimization under uncertainty-applied to fluid catalytic cracking unit[J]. Computers & Chemical Engineering, 2022, 166: 107989.
|
| [12] |
Hong J, Tian W D. Prediction in catalytic cracking process based on swarm intelligence algorithm optimization of LSTM[J]. Processes, 2023, 11(5): 1454.
|
| [13] |
Liu N, Zhu C M, Zhang M X, et al. A multiscale adaptive framework based on convolutional neural network: application to fluid catalytic cracking product yield prediction[J]. Petroleum Science, 2024, 21(4): 2849-2869.
|
| [14] |
Zhou C, Liu Q Y, Huang D X, et al. Inferential estimation of kerosene dry point in refineries with varying crudes[J]. Journal of Process Control, 2012, 22(6): 1122-1126.
|
| [15] |
Gao X Y, Shang C, Jiang Y H, et al. Refinery scheduling with varying crude: a deep belief network classification and multimodel approach[J]. AIChE Journal, 2014, 60(7): 2525-2532.
|
| [16] |
Das S, Nayak M, Senapati M R. Improving time series prediction with deep belief network[J]. Journal of the Institution of Engineers (India): Series B, 2023, 104(5): 1103-1118.
|
| [17] |
Hallac D, Vare S, Boyd S, et al. Toeplitz inverse covariance-based clustering of multivariate time series data[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 13-17, 2017, Halifax, NS, Canada. ACM, 2017: 215-223.
|
| [18] |
Li H H, Liu J X, Yang Z L, et al. Adaptively constrained dynamic time warping for time series classification and clustering[J]. Information Sciences, 2020, 534: 97-116.
|
| [19] |
Ienco D, Interdonato R. Deep multivariate time series embedding clustering via attentive-gated autoencoder[C]//PAKDD 2020, May 11-14, 2020, Singapore, Springer International Publishing, 2020: 318-329.
|
| [20] |
Huang H, Shah T, Yoo S. Deep time series sketching and its application on industrial time series clustering[C]//2022 IEEE International Conference on Big Data (Big Data), December 17-20, 2022, Osaka, Japan. IEEE, 2022: 1997-2006.
|
| [21] |
Ienco D, Interdonato R. Deep semi-supervised clustering for multi-variate time-series[J]. Neurocomputing, 2023, 516: 36-47.
|
| [22] |
Ismail Fawaz H, Forestier G, Weber J, et al. Deep learning for time series classification: a review[J]. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963.
|
| [23] |
徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009.
|
|
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009.
|
| [24] |
Koller D, Friedman N. Probabilistic Graphical Models: Principles and Techniques[M]. Cambridge, Massachusetts: The MIT Press, 2009.
|
| [25] |
Lauritzen S L. Graphical Models[M]. Oxford: Clarendon Press, 1996.
|
| [26] |
Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso[J]. Biostatistics, 2008, 9(3): 432-441.
|
| [27] |
Stephen B, Parikh Neal, Eric C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1):1-122.
|
| [28] |
张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42.
|
|
Zhang X G. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1): 32-42.
|
| [29] |
Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
|
| [30] |
Gao T Y, Luo H, Yin S, et al. A recursive modified partial least square aided data-driven predictive control with application to continuous stirred tank heater[J]. Journal of Process Control, 2020, 89: 108-118.
|