化工学报 ›› 2013, Vol. 64 ›› Issue (12): 4296-4303.DOI: 10.3969/j.issn.0438-1157.2013.12.004

• 过程系统工程 • 上一篇    下一篇

基于图像空间结构统计分布的浮选泡沫状态识别

陈青1,3, 刘金平1,2, 桂卫华1, 唐朝晖1   

  1. 1. 中南大学信息科学与工程学院, 湖南 长沙 410083;
    2. 湖南师范大学数学与计算机科学学院, 湖南 长沙 410081;
    3. 湖南工业大学计算机通信学院, 湖南 株洲 412008
  • 收稿日期:2013-08-26 修回日期:2013-09-06 出版日期:2013-12-05 发布日期:2013-12-05
  • 通讯作者: 刘金平
  • 作者简介:陈青(1967- ),女,博士研究生,副教授。
  • 基金资助:

    国家自然科学基金重点项目(61134006);国家自然科学基金项目(61071176,61171192,61272337)。

Spatial structure statistics of froth images based recognition of flotation froth states

CHEN Qing1,3, LIU Jinping1,2, GUI Weihua1, TANG Zhaohuig1   

  1. 1. School of Information Science and Engineering, Central South University, Changsha 410083, Hunan, China;
    2. College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, Hunan, China;
    3. School of Computer and Communication, Hunan University of Technology, Zhuzhou 412008, Hunan, China
  • Received:2013-08-26 Revised:2013-09-06 Online:2013-12-05 Published:2013-12-05
  • Supported by:

    supported by the Key Program of the National Natural Science Foundation of China (61134006) and the National Natural Science Foundation of China (61071176,61171192,61272337).

摘要: 通过泡沫图像统计建模,实现了基于图像空间结构感知的浮选泡沫状态自动识别与客观评价。首先,采用Weibull分布建立了泡沫图像各方向边缘响应结构的统计分布模型,有效获取了泡沫图像空间结构的统计分布细节;然后,通过统计学习获得各典型工况状态下的泡沫图像边缘响应统计分布的混合高斯(MoG)模型;最后,通过简单的贝叶斯推理推断出测试泡沫图像对应的工况状态。结果表明:所提出的方法因有效获取了与浮选生产性能直接相关的泡沫空间结构的统计分布特征,可以实时监视泡沫空间结构的变化情况,泡沫生产状态识别准确率高。

关键词: 矿物浮选, 过程系统, 成像, 图像统计建模, 测量, Weibull分布, 工况分类

Abstract: For the purpose of achieving automatic recognition and objective judgment of the production states of the froth phase,statistical modeling of froth images is introduced in the flotation process monitoring.Firstly,the Weibull distribution is applied to model the statistical distribution of the edge response of the froth images of all-round orientations,which leads to the effectively extraction of the spatial structure features of the froth images.Successively,a Mixture of Gaussian (MoG) model of the statistics of the froth images under each typical froth state is obtained by the statistical learning of the structure features of the froth image samples.Consequently,the froth states can be inferred effectively by the Bayesian inference.The froth state recognition results indicate that the proposed method can monitor the on-line spatial structural changes of the froth images,which achieves more accurate recognition results of the froth states comparing to the other froth image perception based froth state recognition.

Key words: mineral flotation, process systems, imaging, statistical modeling of images, measurement, Weibull distribution, operational status classification

中图分类号: