| [1] |
Franssen M C, Steunenberg P, Scott E L, Zuilhof H, Sanders J P. Immobilised enzymes in biorenewables production[J]. Chemical Society Reviews, 2013, 42(15): 6491-6533
|
| [2] |
de Regil R, Sandoval G. Biocatalysis for biobased chemicals[J]. Biomolecules, 2013, 3(4): 812-847
|
| [3] |
Rodrigues R C, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez- Lafuente R. Modifying enzyme activity and selectivity by immobilization[J]. Chemical Society Reviews, 2013, 42(15): 6290-6307
|
| [4] |
Bommarius A S, Paye M F. Stabilizing biocatalysts[J]. Chemical Society Reviews, 2013, 42(15): 6534-6565
|
| [5] |
Goldstein L, Levin Y, Katchalski E. A water-insoluble polyanionic derivative of trypsin(Ⅱ): Effect of the polyelectrolyte carrier on the kinetic behavior of the bound trypsin[J]. Biochemistry, 1964, 3(12): 1913-1919
|
| [6] |
Goto M, Hatanaka C, Goto M. Immobilization of surfactant-lipase complexes and their high heat resistance in organic media[J]. Biochemical Engineering Journal, 2005, 24(1): 91-94
|
| [7] |
Zhang A J, Xie Y, Zhou J. Experimental control and characterization of protein orientation on surfaces[J]. Progress in Chemistry, 2009, 21(7-8): 1408-1417
|
| [8] |
Wilchek M, Miron T. Oriented versus random protein immobilization [J]. Journal of Biochemical and Biophysical Methods, 2003, 55(1): 67-70
|
| [9] |
Liu J, Li C, Yang Q, Yang J, Li C. Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption[J]. Langmuir, 2007, 23(13): 7255-7262
|
| [10] |
Koutsopoulos S, Patzsch K, Bosker W T E, Norde W. Adsorption of trypsin on hydrophilic and hydrophobic surfaces[J]. Langmuir, 2007, 23(4): 2000-2006
|
| [11] |
Marsh R J, Jones R A L, Sferrazza M. Adsorption and displacement of a globular protein on hydrophilic and hydrophobic surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2002, 23(1): 31-42
|
| [12] |
Zhou Z, Hartmann M. Progress in enzyme immobilization in ordered mesoporous materials and related applications[J]. Chemical Society Reviews, 2013, 42(9): 3894-3912
|
| [13] |
Yang X Y, Tian G, Jiang N, Su B L. Immobilization technology: a sustainable solution for biofuel cell design[J]. Energy & Environmental Science, 2012, 5(2): 5540
|
| [14] |
Kondo A, Murakami F, Higashitani K. Circular dichroism studies on conformational changes in protein molecules upon adsorption on ultrafine polystyrene particles[J]. Biotechnology and Bioengineering, 1992, 40(8): 889-894
|
| [15] |
Haynes C A, Sliwinsky E, Norde W. Structural and electrostatic properties of globular proteins at a polystyrene-water interface[J]. Journal of Colloid and Interface Science, 1994, 164(2): 394-409
|
| [16] |
Mungikar A A, Forciniti D. Conformational changes of peptides at solid/liquid interfaces: a Monte Carlo study[J]. Biomacromolecules, 2004, 5(6): 2147-2159
|
| [17] |
Lopez-Gallego F, Betancor L, Hidalgo A, Dellamora-Ortiz G, Mateo C, Fernández-Lafuente R, Guisán J M. Stabilization of different alcohol oxidases via immobilization and post immobilization techniques[J]. Enzyme and Microbial Technology, 2007, 40(2): 278-284
|
| [18] |
Talbert J N, Goddard J M. Enzymes on material surfaces[J]. Colloids and Surfaces B, Biointerfaces, 2012, 93: 8-19
|
| [19] |
Zhou J, Chen S, Jiang S. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model[J]. Langmuir, 2003, 19(8): 3472-3478
|
| [20] |
Zhou J, Zheng J, Jiang S. Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers[J]. The Journal of Physical Chemistry B, 2004, 108(45): 17418-17424
|
| [21] |
Xie Y, Zhou J, Jiang S. Parallel tempering Monte Carlo simulations of lysozyme orientation on charged surfaces[J]. The Journal of Chemical Physics, 2010, 132(6): 065101
|
| [22] |
Liu J, Liao C, Zhou J. Multiscale simulations of protein G B1 adsorbed on charged self-assembled monolayers[J]. Langmuir, 2013, 29(36): 11366-11374
|
| [23] |
Appel A M, Bercaw J E, Bocarsly A B, Dobbek H, DuBois D L, Dupuis M, Ferry J G, Fujita E, Hille R, Kenis P J. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113: 6621-6658
|
| [24] |
Tan T, Lu J, Nie K, Deng L, Wang F. Biodiesel production with immobilized lipase: a review[J]. Biotechnology Advances, 2010, 28(5): 628-634
|
| [25] |
Shimada Y, Sugihara A, Shibahiraki M, Fujita H, Nakano H, Nagao T, Terai T, Tominaga Y. Purification of γ-linolenic acid from borage oil by a two-step enzymatic method[J]. Journal of the American Oil Chemists' Society, 1997, 74(11): 1465-1470
|
| [26] |
Hasan F, Shah A A, Hameed A. Industrial applications of microbial lipases[J]. Enzyme and Microbial Technology, 2006, 39(2): 235-251
|
| [27] |
Uppenberg J, Hansen M T, Patkar S, Jones T A. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica[J]. Structure, 1994, 2(4): 293-308
|
| [28] |
Martinelle M, Holmquist M, Hult K. On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1995, 1258(3): 272-276
|
| [29] |
Divne C, Stahlberg J, Reinikainen T, Ruohonen L, Pettersson G, Knowles J, Teeri T T, Jones T. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei[J]. Science, 1994, 265(5171): 524-528
|
| [30] |
Goyal A, Ghosh B, Eveleigh D. Characteristics of fungal cellulases[J]. Bioresource Technology, 1991, 36(1): 37-50
|
| [31] |
Jiang F, Kittle J D, Tan X, Esker A R, Roman M. Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates[J]. Langmuir, 2013, 29(10): 3280-3291
|
| [32] |
Frey M. Hydrogenases: hydrogen-activating enzymes[J]. ChemBioChem, 2002, 3(2-3): 153-160
|
| [33] |
Adams M W. The structure and mechanism of iron-hydrogenases[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1990, 1020(2): 115-145
|
| [34] |
Peters J W. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution[J]. Science, 1998, 282(5395): 1853-1858
|
| [35] |
Pickersgill R W. A rapid method of calculating charge-charge interaction energies in proteins[J]. Protein Engineering, 1988, 2(3): 247-248
|
| [36] |
Malinin A S, Rakhnyanskaya A A, Bacheva A V, Yaroslavov A A. Activity of an enzyme immobilized on polyelectrolyte multilayers[J]. Polymer Science Series A, 2011, 53(1): 52-56
|
| [37] |
Qian Z, Lutz S. Improving the catalytic activity of Candida antarctica lipase B by circular permutation[J]. Journal of the American Chemical Society, 2005, 127(39): 13466-13467
|
| [38] |
Hagiwara T, Sakiyama T, Watanabe H. Molecular simulation of bovine beta-lactoglobulin adsorbed onto a positively charged solid surface[J]. Langmuir, 2009, 25(1): 226-234
|
| [39] |
Lojou E. Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces[J]. Electrochimica Acta, 2011, 56(28): 10385-10397
|