1 |
刘振宇, 李清波. 煤化工在“碳中和”历程中不可或缺[N]. 中国科学报, 2021-08-23(3).
|
|
Liu Z Y, Li Q B. Coal chemical engineering is indispensable in the process of “carbon neutralization”[N]. China Science Daily, 2021-08-23(3).
|
2 |
Miura K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2/3): 119-135.
|
3 |
Solomon P R, Serio M A, Suuberg E M. Coal pyrolysis: experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18(2): 133-220.
|
4 |
周国江, 刘竹涛, 战金辉, 等. 温度梯度与产物流动对先锋褐煤热解产物分布的影响[J]. 化工学报, 2018, 69(6): 2672-2680.
|
|
Zhou G J, Liu Z T, Zhan J H, et al. Effects of temperature gradient and product flow on distribution of pyrolysis products of Xianfeng lignite[J]. CIESC Journal, 2018, 69(6): 2672-2680.
|
5 |
刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439.
|
|
Liu Z Y. Advancement in coal chemistry: structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44(9): 1431-1439.
|
6 |
Solomon P R, Fletcher T H, Pugmire R J. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5): 587-597.
|
7 |
He W J, Liu Z Y, Liu Q Y, et al. Behaviors of radical fragments in tar generated from pyrolysis of 4 coals[J]. Fuel, 2014, 134: 375-380.
|
8 |
He W J, Liu Z Y, Liu Q Y, et al. Behavior of radicals during solvent extraction of three low rank bituminous coals[J]. Fuel Processing Technology, 2017, 156: 221-227.
|
9 |
Shi L, Liu Q Y, Guo X J, et al. Pyrolysis of coal in TGA: extent of volatile condensation in crucible[J]. Fuel Processing Technology, 2014, 121: 91-95.
|
10 |
Zhou Q Q, Liu Q Y, Shi L, et al. Behaviors of coking and radicals during reaction of volatiles generated from fixed-bed pyrolysis of a lignite and a subbituminous coal[J]. Fuel Processing Technology, 2017, 161: 304-310.
|
11 |
Li J H, Ge W, Wang W, et al. Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13: 10-23.
|
12 |
Wang J W, Zhao B D, Li J H. Toward a mesoscale-structure-based kinetic theory for heterogeneous gas-solid flow: particle velocity distribution function[J]. AIChE Journal, 2016, 62(8): 2649-2657.
|
13 |
Mathews J P, van Duin A C T, Chaffee A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.
|
14 |
Mathews J P, Chaffee A L. The molecular representations of coal — a review[J]. Fuel, 2012, 96: 1-14.
|
15 |
van Duin A C T, Dasgupta S, Lorant F, et al. ReaxFF: a reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
16 |
Senftle T P, Hong S, Islam M M, et al. The ReaxFF reactive force-field: development, applications and future directions[J]. Npj Computational Materials, 2016, 2: 15011.
|
17 |
Castro-Marcano F, Russo M F, van Duin A C T, et al. Pyrolysis of a large-scale molecular model for Illinois No.6 coal using the ReaxFF reactive force field[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 79-89.
|
18 |
冯炜, 高红凤, 王贵, 等. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报, 2019, 70(4): 1522-1531.
|
|
Feng W, Gao H F, Wang G, et al. Molecular model and pyrolysis simulation of Zaoquan coal[J]. CIESC Journal, 2019, 70(4): 1522-1531.
|
19 |
Salmon E, van Duin A C T, Lorant F, et al. Early maturation processes in coal(Ⅱ): Reactive dynamics simulations using the ReaxFF reactive force field on Morwell brown coal structures[J]. Organic Geochemistry, 2009, 40(12): 1195-1209.
|
20 |
Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel, 2014, 136: 326-333.
|
21 |
Hong D K, Cao Z, Guo X. Effect of calcium on the secondary reactions of tar from Zhundong coal pyrolysis: a molecular dynamics simulation using ReaxFF[J]. Journal of Analytical and Applied Pyrolysis, 2019, 137: 246-252.
|
22 |
Gao M J, Li X X, Guo X, et al. Dynamic migration mechanism of organic oxygen in Fugu coal pyrolysis by large-scale ReaxFF molecular dynamics[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105109.
|
23 |
Salmon E, van Duin A C T, Lorant F, et al. Thermal decomposition process in algaenan of Botryococcus braunii race L(Ⅱ): Molecular dynamics simulations using the ReaxFF reactive force field[J]. Organic Geochemistry, 2009, 40(3): 416-427.
|
24 |
Castro-Marcano F, Kamat A M, Russo M F, et al. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field[J]. Combustion and Flame, 2012, 159(3): 1272-1285.
|
25 |
Zheng M, Li X X, Guo L. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics[J]. Journal of Molecular Graphics and Modelling, 2013, 41: 1-11.
|
26 |
Zheng M, Li X X, Wang M J, et al. Dynamic profiles of tar products during Naomaohu coal pyrolysis revealed by large-scale reactive molecular dynamic simulation[J]. Fuel, 2019, 253: 910-920.
|
27 |
Liu J, Li X X, Guo L, et al. Reaction analysis and visualization of ReaxFF molecular dynamics simulations[J]. Journal of Molecular Graphics and Modelling, 2014, 53: 13-22.
|
28 |
Zheng M, Li X X, Liu J, et al. Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis[J]. Energy & Fuels, 2014, 28(1): 522-534.
|
29 |
Gao M J, Li X X, Guo L. Pyrolysis simulations of Fugu coal by large-scale ReaxFF molecular dynamics[J]. Fuel Processing Technology, 2018, 178: 197-205.
|
30 |
Gao M J, Li X X, Ren C X, et al. Construction of a multicomponent molecular model of Fugu coal for ReaxFF-MD pyrolysis simulation[J]. Energy & Fuels, 2019, 33(4): 2848-2858.
|
31 |
Zheng M, Pan Y, Wang Z, et al. Capturing the dynamic profiles of products in Hailaer brown coal pyrolysis with reactive molecular simulations and experiments[J]. Fuel, 2020, 268: 117290.
|
32 |
Li X X, Zheng M, Ren C X, et al. ReaxFF molecular dynamics simulations of thermal reactivity of various fuels in pyrolysis and combustion[J]. Energy & Fuels, 2021, 35(15): 11707-11739.
|
33 |
Zheng M, Li X X, Nie F G, et al. Investigation of model scale effects on coal pyrolysis using ReaxFF MD simulation[J]. Molecular Simulation, 2017, 43(13/14/15/16): 1081-1088.
|
34 |
Zheng M, Li X X, Nie F G, et al. Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics[J]. Energy & Fuels, 2017, 31(4): 3675-3683.
|
35 |
Zhang T T, Li X X, Qiao X J, et al. Initial mechanisms for an overall behavior of lignin pyrolysis through large-scale ReaxFF molecular dynamics simulations[J]. Energy & Fuels, 2016, 30(4): 3140-3150.
|
36 |
Zhang T T, Li X X, Guo L. Initial reactivity of linkages and monomer rings in lignin pyrolysis revealed by ReaxFF molecular dynamics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2017, 33(42): 11646-11657.
|
37 |
Zheng M, Wang Z, Li X X, et al. Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics[J]. Fuel, 2016, 177: 130-141.
|
38 |
Mueller J E, van Duin A C T, W A Ⅲ Goddard. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition[J]. The Journal of Physical Chemistry C, 2010, 114(12): 5675-5685.
|
39 |
韩君易, 李晓霞, 郭力, 等. ReaxFF MD模拟的物种和化学反应自动分类及可视化[J]. 计算机与应用化学, 2015, 32(5): 519-526.
|
|
Han J Y, Li X X, Guo L, et al. Automatic classification and visualization of species and reactions obtained from ReaxFF MD simulations[J]. Computers and Applied Chemistry, 2015, 32(5): 519-526.
|
40 |
贺巧鑫, 任春醒, 李晓霞, 等. ReaxFF MD模拟结果分析中化学反应路径网络的发现[J]. 计算机与应用化学, 2019, 36(4): 299-303.
|
|
He Q X, Ren C X, Li X X, et al. Discovery of chemical reaction networks in analysis of ReaxFF MD simulations[J]. Computers and Applied Chemistry, 2019, 36(4): 299-303.
|
41 |
唐钰杰, 郑默, 任春醒, 等. ReaxFF MD局部区域反应追踪与物理性质可视化分析[J]. 物理化学学报, 2021, 37(10): 77-87.
|
|
Tang Y J, Zheng M, Ren C X, et al. Visualized reaction tracking and physical property analysis for a picked 3D area in a reactive molecular dynamics simulation system[J]. Acta Physico-Chimica Sinica, 2021, 37(10): 77-87.
|