化工学报 ›› 2016, Vol. 67 ›› Issue (6): 2598-2604.DOI: 10.11949/j.issn.0438-1157.20151675
付康丽1, 姚明宇1, 钦传光2, 程广文1, 聂剑平1
收稿日期:
2015-11-06
修回日期:
2015-11-23
出版日期:
2016-06-05
发布日期:
2016-06-05
通讯作者:
付康丽, 钦传光
基金资助:
中国博士后科学基金项目(2015M570849);国家科技支撑计划项目(2014BAA07B04)。
FU Kangli1, YAO Mingyu1, QIN Chuanguang2, CHENG Guangwen1, NIE Jianping1
Received:
2015-11-06
Revised:
2015-11-23
Online:
2016-06-05
Published:
2016-06-05
Supported by:
supported by the China Postdoctoral Science Foundation (2015M570849) and the National Key Technology Research and Development Program of China (2014BAA07B04).
摘要:
以氯甲基化聚苯乙烯微球为原料,经过两步反应制得巯基聚苯乙烯树脂,用红外光谱测试、比表面分析、元素分析及热重分析表征了该巯基聚苯乙烯树脂,测试了此巯基聚苯乙烯树脂对含Hg2+烟气、脱硫废水及脱硫浆液的脱汞性能。分析测试表明:巯基聚苯乙烯树脂热稳定性好,能有效脱除烟气、脱硫废水及脱硫浆液中的Hg2+。巯基聚苯乙烯树脂对烟气中Hg2+的脱除效率大于90%,对脱硫废水及脱硫浆液的脱汞率接近100%。将此树脂置于脱硫系统内,能捕捉脱硫系统内的Hg2+,避免Hg2+进入脱硫石膏而造成脱硫石膏中汞的再释放。用6mol·L-1盐酸洗脱捕捉了Hg2+的巯基聚苯乙烯树脂,再生3次后,巯基聚苯乙烯树脂的再生率仍高达90.2%。
中图分类号:
付康丽, 姚明宇, 钦传光, 程广文, 聂剑平. 巯基聚苯乙烯树脂对FGD系统中Hg2+的脱除性能[J]. 化工学报, 2016, 67(6): 2598-2604.
FU Kangli, YAO Mingyu, QIN Chuanguang, CHENG Guangwen, NIE Jianping. Hg2+ removal from FGD system by thiol polystyrene resin[J]. CIESC Journal, 2016, 67(6): 2598-2604.
[1] | WO J J, ZHANG M, CHENG X Y, et al. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors [J]. J. Hazard. Mater., 2009, 172 (2/3): 1106-1110. |
[2] | LIU Y, WANG Y J, WU Z B, et al. Amechanism study of chloride and sulfate effects on Hg2+ reduction insulfite solution [J]. Fuel, 2011, 90 (7): 2501-2507. |
[3] | STERGARŠEK A, HORVAT M, KOTNIK J, et al. The role of flue gas desulphurisation in mercury speciation and distribution in a lignite burning power plant [J]. Fuel, 2008, 87 (17/18): 3504-3512. |
[4] | GOODISE M E, PLANE J M C, SKOV H. Correction to a theoretical study of the oxidation of Hg0 to HgBr2 in the troposphere [J]. Environ. Sci. Technol., 2012, 46 (9): 5262-5262. |
[5] | FINLEY B D, JAFFE D A, CALL K, et al. Development, testing, and deployment of an air sampling manifold for spiking elemental and oxidized mercury during the reno atmospheric mercury inter comparison experiment (RAMIX) [J]. Environ. Sci. Technol., 2013, 47 (13): 7277-7284. |
[6] | LIM D H, WILCOX J. Heterogeneous mercury oxidation on Au(Ⅲ) from first principles [J]. Environ. Sci. Technol., 2013, 47 (15): 8515-8522. |
[7] | LIU Y, WANG Q, MEI R, et al. Mercury re-emission in flue gas multipollutants simultaneous absorption system [J]. Environ. Sci. Technol., 2014, 48 (23): 14025-14030. |
[8] | OCHOA-GONZÁLEZ R, DÍAZ-SOMOANO M, MARTÍNEZ-TARAZONA M R. Effect of anion concentrations on Hg2+ reduction from simulated desulphurization aqueous solutions [J]. Chem. Eng. J., 2013, 214: 165-171. |
[9] | OMINE N, ROMERO C E, KIKKAWA H, WU S, et al. Study of elemental mercury re-emission in a simulated wet scrubber [J]. Fuel, 2012, 91 (1): 93-101. |
[10] | WU C L, CAO Y, HE C C, et al. Study of elemental mercury re-emission through a lab-scale simulated scrubber [J]. Fuel, 2010, 89 (8): 2072-2080. |
[11] | DIAZ-SOMOANO M, UNTERBERGER S, HEIN K R G. Mercury emission control in coal-fired plants: the role of wet scrubbers [J]. Fuel Process. Technol., 2007, 88 (3): 259-263. |
[12] | DEBERRY D W, BLYTHE G M. Bench-scale kinetics study of mercury reactions in FGD liquors[R]. Baltimore: Air and Waste Management Association, 2006. |
[13] | WANG Y J, LIU Y, MO J S, et al. Effects of Mg2+ on the bivalent mercury reduction behaviors in simulated wet FGD absorbents [J]. J. Hazard. Mater., 2012, 237-238: 256-261. |
[14] | HEIDEL B, HILBER M, SCHEFFKNECHT G. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization [J]. Appl. Energy., 2014, 114: 485-491. |
[15] | LU R, HOU J, XU J, et al. Effect of additives on Hg2+ reduction and precipitation inhibited by sodium dithiocarbamate in simulated flue gas desulfurization solutions [J]. J. Hazard. Mater., 2011, 196: 160-165. |
[16] | TANG T, XU J, LU R, et al. Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives [J]. Fuel, 2010, 89: 3613-3617. |
[17] | SUN M, HOU J, TANG T, et al. Stabilization of mercury in flue gas desulfurization gypsum from coal-fired electric power plants with additives [J]. Fuel Process. Technol., 2012, 104: 160-166. |
[18] | DUNHAM G E, DE WALL R A, SENIOR C L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash [J]. Fuel Process. Technol., 2003, 82: 197-213. |
[19] | TRUMAN C C, NUTI R C, TRUMAN L R, et al. Feasibility of using FGD gypsum to conserve water and reduce erosion from an agricultural soil in Georgia [J]. Catena, 2010, 81: 234-239. |
[20] | ÁLVARE-AYUSO E, QUROL X, TOMÁS A. Implications of moisture content determination in the environmental characterisation of FGD gypsum for its disposal in landfills [J]. J. Hazard. Mate., 2008, 153: 544-550. |
[21] | KAIRIES C L, SCHROEDER K T, CARDONE C R. Mercury in gypsum produced from flue gas desulfurization [J]. Fuel, 2006, 85: 2530-2536. |
[22] | PUDASAINEE D, KIM J H, YOON Y S, et al. Oxidation, reemission and mass distribution of mercury in bituminous coal-fired power plants with SCR, CS-ESP and wet FGD [J]. Fuel, 2012, 93: 312-318. |
[23] | LIU X, WANG S, ZHANG L, et al. Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China [J]. Fuel, 2013, 111: 621-627. |
[24] | MARSHALL J, BLYTHE G M, RICHARDSON M. Fate of mercury in synthetic gypsum used for wallboard production [R]. Topical Reports, Prepared for the U.S. Department of Energy National Energy Technology Laboratory, Cooperative Agreement No. DE-FC26-04NT42080, 2008. |
[25] | 程辛, 许绿丝. 钴、猛改性方法对酚醛炭泡沫除SO2/NO的影响 [J]. 华侨大学学报(自然科学版), 2014, 35 (5): 552-557. CHENG X, XU L S. Effect of the modification method with Co and Mn on simultaneous removal of SO2 and NO of phenolic carbon foam [J]. J. Huaqiao University (Natural Science), 2014, 35 (5): 552-557. |
[26] | 李锦, 许绿丝, 李宝宁, 等. 改性酚醛基炭泡沫的表面结构及脱硫脱硝 [J].环境工程学报, 2012, 6 (5): 1637-1642. LI J, XU L S, LI B N, et al. Surface structure and simultaneous removal of SO2 and NO of modified phenolic carbon foam [J]. Chinese J. Environ. Engine., 2012, 6 (5): 1637-1642. |
[27] | 程辛. 尿素、丙烯酸和Co改性酚醛(炭)泡沫脱除SO2/NO的研究 [D]. 厦门: 华侨大学, 2014. CHENG X. Study on simultaneous removal of SO2 and NO of phenolic (carbon) foam modified by urea, acrylic acid and Co [D]. Xiamen: Huaqiao University, 2014. |
[28] | 李锦. 金属化合物/硝酸铵改性酚醛炭泡沫脱除SO2/NO的研究 [D]. 厦门: 华侨大学, 2011. LI J. Study on simultaneous removal of SO2 and NO of carbon foam modified by metal compound/ammonium nitrate [D]. Xiamen: Huaqiao University, 2011. |
[29] | ZDABROWSKI A, HUBICKI Z, PODKO? P, et al. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method [J]. Chemosphere, 2004, 56: 91-106. |
[30] | XIONG C, YAO C. Synthesis, characterization and application of triethylenetetramine modified polystyrene resin in removal of mercury, cadmium and lead from aqueous solutions [J]. Chem. Eng. J., 2009, 155: 844-850. |
[31] | KOLODY?SKA D. The effect of the novel complexing agent in removal of heavy metal ions from waters and waste waters [J]. Chem. Eng. J., 2010, 165: 835-845. |
[32] | 何炳林, 黄文强. 离子交换与吸附树脂 [M]. 上海: 上海科学教育出版社, 1995. HE B L, HUANG W Q. Ion Exchange and Adsorption Resin [M]. Shanghai: Shanghai Technical and Educational Press, 1995. |
[33] | LEE W, BAE G N. Removal elemental mercury (Hg(0)) by nanosized V2O5/TiO2 catalysts [J]. Environ. Sci. Technol., 2009, 43 (5): 1522-1527. |
[34] | LIU C, CHEN L, LI J, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3 [J]. Environ. Sci. Technol., 2012, 46 (11): 6182-6189. |
[35] | CHO C H, IHM S K. Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants [J]. Environ. Sci. Technol., 2002, 36 (7): 1600-1606. |
[36] | GAO W, LIU Q, WU C, et al. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst [J]. Chem. Eng. J., 2013, 220: 53-60. |
[37] | ESWARA S, STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalyst [J]. Energy & Fuel, 2005, 19: 2328-2334. |
[38] | SANGHI R, VERMA P. Biomimetic synthesis and characterization of protein capped silver nanoparticles [J]. Bioresource Technol., 2009, 100: 501-504. |
[39] | LI L, LIU Z, LING Q, et al. Polystyrene-supported Cul-imidazole complex catalyst for aza-Michael reaction of imidazoles with α,β-unsaturated compounds [J]. J. Mol. Catal. A-Chem., 2007, 69: 29-40. |
[40] | OSTROVERKHOV N J, TIAN C S, SHEN Y R. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy [J]. Phys. Rev. Lett., 2008, 100: 096102. |
[41] | MONDAL B C, DAS D, DAS A K. Synthesis and characterization of a new resin functionalized with 2-naphthol-3,6-disulfonic acid and its application for the speciation of chromium in natural water [J]. Talanta, 2002, 56: 145-152. |
[42] | LOZANO-CASTELLÓ D, CAZORLA-AMORÓS D, LINARES-SOLANO A, et al. Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte [J]. Carbon, 2003, 41: 1765-1775. |
[43] | CHENG X, LI S, ZHONG Z, WANG S, et al. Carbamodithioate-based dual functional fluorescent probe for Hg2+ and S2- [J]. J. Fluoresc., 2014, 24: 1727-1733. |
[44] | CUI L, GUO X, WEI Q, et al. Removal of mercury and methylene blue from aqueous solution by xanthate functionlized magnetic grapheme oxide: sorption kinetic and uptake mechanism [J]. J. Colloid Interf. Sci., 2015, 439: 112-120. |
[45] | 张青梅, 向仁军, 成应向. 巯基树脂的合成及对Hg2+的吸附特征 [J]. 环境科学研究, 2010, 7 (23): 888-892. ZHANG Q M, XIANG R J, CHENG Y X. Synthesis of thiol resin and its adsorption properties for Hg2+ [J]. Res. Environ. Sci., 2010, 7 (23): 888-892. |
[46] | TENG M, WANG H, LI F, et al. Thioether-functionalized mesoporous fiber membranes: sol-gel combined electrospun fabrication and their application for Hg2+ removal [J]. J. Colloid Interf. Sci., 2011, 355: 23-28. |
[47] | LI G, SHEN B, LI Y, et al. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions [J]. J. Hazard. Mater., 2015, 298: 162-169. |
[48] | LU X, JIANG J, SUN K, et al. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions [J]. Mar. Pollut. Bull, 2014, 78 (1/2): 69-76. |
[49] | MIN H K, AHMAD T, KIM K Y, et al. Mercury adsorption characteristics of sulphur-impregnated activated carbon pellets for the flue gas condition of a cement-manufacturing process [J]. Adsorpt. Sci. Technol., 2015, 33 (3): 251-262. DOI: 10.1260/0263-6174.33.3.251. |
[50] | DUJARDIN M C, CAZE C, VROMAN I. Ion-exchange resins bearing thiol groups to remove mercury (Ⅰ): Synthesis and use of polymers prepared from thioester supported resin [J]. React. Funct. Polym., 2000, 43 (2000): 123-132. |
[51] | UKAWA N, TAKASHINA T, OSHIMA M, et al. Effect of salts on limestone dissolution rate in wet limestone flue gas desulfurization [J]. Environ. Prog., 1993, 12 (4): 294-299. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[3] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 时国华, 何林珅, 赵玺灵, 张世钢. 余热回收喷淋塔的烟气颗粒物脱除特性研究[J]. 化工学报, 2023, 74(4): 1735-1745. |
[6] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[7] | 李承威, 骆华勇, 张铭轩, 廖鹏, 方茜, 荣宏伟, 王竞茵. 氢氧化镧交联壳聚糖微球的微流控制备及其除磷性能[J]. 化工学报, 2022, 73(9): 3929-3939. |
[8] | 王佳铭, 阮雪华, 贺高红. 面向不同工业二氧化碳分离体系的膜材料研究进展[J]. 化工学报, 2022, 73(8): 3417-3432. |
[9] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[10] | 贾艳萍, 丁雪, 刚健, 佟泽为, 张海丰, 张兰河. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193. |
[11] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[12] | 季超, 刘炜, 漆虹. 基于空冷的疏水陶瓷膜冷凝器用于烟气脱湿过程强化的实验研究[J]. 化工学报, 2022, 73(5): 2174-2182. |
[13] | 李雪, 东明, 张璜, 谢俊. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
[14] | 赵希强, 张健, 孙爽, 王文龙, 毛岩鹏, 孙静, 刘景龙, 宋占龙. 生物质炭改性微球去除化工废水中无机磷的性能研究[J]. 化工学报, 2022, 73(5): 2158-2173. |
[15] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||