化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3564-3571.DOI: 10.11949/0438-1157.20230304
收稿日期:
2023-03-28
修回日期:
2023-06-26
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
彭啸
作者简介:
杨欣(1998—),女,硕士研究生,1540194146@qq.com
基金资助:
Xin YANG(), Xiao PENG(), Kairu XUE, Mengwei SU, Yan WU
Received:
2023-03-28
Revised:
2023-06-26
Online:
2023-08-25
Published:
2023-10-18
Contact:
Xiao PENG
摘要:
分别以菲(PHE)、非离子表面活性剂曲拉通X-100及两者的混合物作为模板,钛酸正丁酯为功能单体,通过溶胶-凝胶法,制备得到三种分子印迹-TiO2[MIP-(TX-100)TiO2,MIP-(PHE)TiO2,MIP-(TX-100+PHE)TiO2],并且制备对应的薄膜电极,用于光电催化处理模拟土壤淋洗增溶废水PHE。通过XRD、氮气吸附脱附、SEM对MIP-TiO2材料及其薄膜电极进行性能表征。结果表明,MIP-(TX-100)TiO2中,TX-100印迹分子的引入会改变晶体结构,出现金红石晶相TiO2,且其比表面积达到63.533 m2/g,TiO2颗粒大小及分散性较为良好,团聚现象也得到了一定的改善,其对TX-100(5 g/L)增溶的PHE(30 mg/L)溶液光电催化降解率可达74.45%。MIP-(TX-100)TiO2电极对增溶废水PHE的吸附过程更符合二级动力学模型,该过程主要受化学吸附所控制。推测分子印迹过程使TiO2产生大量印迹空穴,在光电催化过程中印迹空穴富集TX-100后,使PHE破除胶束障碍,从而提高了PHE的降解效率。
中图分类号:
杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571.
Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE[J]. CIESC Journal, 2023, 74(8): 3564-3571.
样品 | 比表面积/(m2/g) | 总孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
NIP-TiO2 | 11.31 | 0.01942 | 6.869 |
MIP-(PHE)TiO2 | 67.75 | 0.08322 | 4.914 |
MIP-(TX-100)TiO2 | 63.53 | 0.06229 | 3.922 |
MIP-(TX-100+PHE)TiO2 | 69.61 | 0.07274 | 4.180 |
表1 NIP-TiO2及MIP -TiO2的孔结构参数
Table 1 Pore structure parameters of molecularly imprinted-TiO2 and NIP-TiO2
样品 | 比表面积/(m2/g) | 总孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
NIP-TiO2 | 11.31 | 0.01942 | 6.869 |
MIP-(PHE)TiO2 | 67.75 | 0.08322 | 4.914 |
MIP-(TX-100)TiO2 | 63.53 | 0.06229 | 3.922 |
MIP-(TX-100+PHE)TiO2 | 69.61 | 0.07274 | 4.180 |
MIP-TiO2电极 | 准一级动力学 | 准二级动力学 | ||||
---|---|---|---|---|---|---|
qe/(mg/g) | K1/min-1 | R2 | qe/(mg/g) | K2/(mg/(g·min)) | R2 | |
MIP-(PHE)TiO2 | 0.1348 | 0.0220 | 0.7880 | 0.1605 | 0.1607 | 0.8445 |
MIP-(TX-100)TiO2 | 0.1918 | 0.0539 | 0.9405 | 0.2071 | 0.4950 | 0.9620 |
MIP-(TX-100+PHE)TiO2 | 0.1553 | 0.0431 | 0.8629 | 0.1737 | 0.3705 | 0.9141 |
表2 MIP-TiO2电极增溶PHE的光电催化降解动力学参数
Table 2 Kinetic parameters of photoelectrocatalytic degradation of TX-100 solubilized phenanthrene by MIP-TiO2 electrode
MIP-TiO2电极 | 准一级动力学 | 准二级动力学 | ||||
---|---|---|---|---|---|---|
qe/(mg/g) | K1/min-1 | R2 | qe/(mg/g) | K2/(mg/(g·min)) | R2 | |
MIP-(PHE)TiO2 | 0.1348 | 0.0220 | 0.7880 | 0.1605 | 0.1607 | 0.8445 |
MIP-(TX-100)TiO2 | 0.1918 | 0.0539 | 0.9405 | 0.2071 | 0.4950 | 0.9620 |
MIP-(TX-100+PHE)TiO2 | 0.1553 | 0.0431 | 0.8629 | 0.1737 | 0.3705 | 0.9141 |
1 | Lu X Y, Zhang T, Fang H P. Bacteria-mediated PAH degradation in soil and sediment[J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1357-1371. |
2 | Jeffy B D, Chen E J, Gudas J M, et al. Disruption of cell cycle kinetics by benzo[a]pyrene: inverse expression patterns of BRCA-1 and p53 in MCF-7 cells arrested in S and G2[J]. Neoplasia, 2000, 2(5): 460-470. |
3 | 郑美林, 赵颖豪, 苗莉莉, 等. 多环芳烃污染土壤生物修复研究进展[J]. 生物工程学报, 2021, 37(10): 3535-3548. |
Zheng M L, Zhao Y H, Miao L L, et al. Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10): 3535-3548. | |
4 | Gautam P, Bajagain R, Jeong S W. Combined effects of soil particle size with washing time and soil-to-water ratio on removal of total petroleum hydrocarbon from fuel contaminated soil[J]. Chemosphere, 2020, 250: 126206. |
5 | Gong Y Y, Zhao D Y, Wang Q D. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440-460. |
6 | Mangwani N, Kumari S, Das S. Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm[J]. Pedosphere, 2017, 27(3): 548-558. |
7 | Wu C, Li F, Yi S W, et al. Genetically engineered microbial remediation of soils co-contaminated by heavy metals and polycyclic aromatic hydrocarbons: advances and ecological risk assessment[J]. Journal of Environmental Management, 2021, 296: 113185. |
8 | Deng B L, Zhou X Q, Yang X J, et al. Removal of polychlorinated biphenyls and recycling of tween-80 in soil washing eluents[J]. Desalination and Water Treatment, 2017, 64: 109-117. |
9 | Ahn C K, Kim Y M, Woo S H, et al. Selective adsorption of phenanthrene dissolved in surfactant solution using activated carbon[J]. Chemosphere, 2007, 69(11): 1681-1688. |
10 | Gong X, Xu X Y, Gong Z Q, et al. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process[J]. Environmental Science and Pollution Research, 2015, 22(16): 12001-12010. |
11 | Carboneras Contreras M B, Fourcade F, Assadi A, et al. Electro Fenton removal of clopyralid in soil washing effluents[J]. Chemosphere, 2019, 237: 124447. |
12 | Jamble S N, Ghoderao K P, Kale R B. Studies on growth mechanism and physical properties of hydrothermally synthesized CdS with novel hierarchical superstructures and their photocatalytic activity[J]. Journal of Physics and Chemistry of Solids, 2018, 114: 109-120. |
13 | Moreira F C, Boaventura R A R, Brillas E, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261. |
14 | Mamaghani A H, Haghighat F, Lee C S. Photocatalytic oxidation technology for indoor environment air purification: the state-of-the-art[J]. Applied Catalysis B: Environmental, 2017, 203: 247-269. |
15 | 应霞薇, 浮建军, 曾敏, 等.基于BiOCl-Fe2O3@TiO2介孔复合材料的光电化学合成氨性能研究[J]. 化学学报, 2022, 80(4): 503-509. |
Ying X W, Fu J J, Zeng M, et al. BiOCl-Fe2O3@TiO2 mesoporous composite for photoelectrochemical synthesis of ammonia[J]. Acta Chimica Sinica, 2022, 80(4): 503-509. | |
16 | 王思旋. 二氧化钛分子印迹光催化剂的制备和选择性光催化作用[D]. 武汉: 华中师范大学, 2013. |
Wang S X. The preparation and selective photocatalysis properties of molecular imprinted TiO2 [D]. Wuhan: Central China Normal University, 2013. | |
17 | 魏声培, 安娅, 秦好丽. 水杨酸分子印迹掺氮TiO2粉末的制备及在可见光下的选择性光催化研究[J]. 华南农业大学学报, 2016, 37(4): 134-140. |
Wei S P, An Y, Qin H L. Preparation of salicylic acid molecularly imprinted and N-doped TiO2 powders and their selective photocatalytic activity under visible light [J]. Journal of South China Agricultural University, 2016, 37(4): 134-140. | |
18 | Paz Y. Preferential photodegradation - why and how?[J]. Comptes Rendus Chimie, 2006, 9(5/6): 774-787. |
19 | 吴鹏飞, 朱雷, 汪恂, 等. 分子印迹TiO2光催化降解水杨酸有机废水研究[J]. 工业水处理, 2019, 39 (2): 26-29. |
Wu P F, Zhu L, Wang X, et al. Research on the photo-catalytic degradation of organic wastewater containing salicylic acid by molecularly imprinted TiO2 [J]. Industrial Water Treatment, 2019, 39 (2): 26-29. | |
20 | 张良晓. ZnO-MIP-TiO2光催化选择性降解尼泊金乙酯的实验研究[D]. 武汉: 武汉科技大学, 2021. |
Zhang L X. Experimental study on the photocatalytic selective degradation of ethyl paraben by ZnO-MIP-TiO2 [D]. Wuhan: Wuhan University of Science and Technology, 2021. | |
21 | 管杰, 孙玲娜, 徐琴, 等. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760. |
Guan J, Sun L N, Xu Q, et al. Synthesis and application of molecularly imprinted polymers based on titanium dioxide and its composites[J]. Progress in Chemistry, 2018, 30(11): 1749-1760. | |
22 | 赵谷雨. 磁性聚多巴胺分子印迹聚合物的制备及其吸附喹诺酮药物研究[D]. 舟山: 浙江海洋大学, 2022. |
Zhao G Y. Preparation of magnetic dopamine surface molecularly imprinted polymers for quinolones adsorption [D]. Zhoushan: Zhejiang Ocean University, 2022. | |
23 | 季金苟, 石朝辉, 郭静, 等. 混晶型纳米二氧化钛混悬液的制备及其光催化性能[J]. 材料导报, 2012, 26(14): 29-32. |
Ji J G, Shi C H, Guo J, et al. Preparation and photocatalysis of the nano-TiO2 mixed crystals suspension[J]. Materials Review, 2012, 26(14): 29-32. | |
24 | 朱晓东, 王娟, 喻强, 等. Zn掺杂混晶TiO2的制备及光催化性能研究[J].化工新型材料, 2021, 49(8): 136-139. |
Zhu X D, Wang J, Yu Q, et al. Preparation and photocatalytic property of Zn-doped mixed crystal TiO2 [J]. New Chemical Materials, 2021, 49(8): 136-139. | |
25 | Liu Y, Mu K S, Zhang Y Z, et al. Facile synthesis of a narrow-gap titanium dioxide anatase/rutile nanofiber film on titanium foil with high photocatalytic activity under sunlight[J]. International Journal of Hydrogen Energy, 2016, 41(24): 10327-10334. |
26 | Moosavi F, Lemarchand A, Bazin C, et al. Photocatalytic nanocomposite anatase-rutile TiO2 coating[J]. Applied Physics A, 2022, 128(11): 1-10. |
27 | 蒋彩云, 吴婷, 周海飞, 等.一种可温度与pH调控的分子印迹光催化材料的制备及其性能[J].化工进展, 2021, 40(1): 305-312. |
Jiang C Y, Wu T, Zhou H F, et al. Preparation and property of a molecular imprinted material with photocatalytic activity controlled by temperature and pH[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 305-312. | |
28 | Zhou X X, Lai C, Huang D L, et al. Preparation of water-compatible molecularly imprinted thiol-functionalized activated titanium dioxide: selective adsorption and efficient photodegradation of 2, 4-dinitrophenol in aqueous solution[J]. Journal of Hazardous Materials, 2018, 346: 113-123. |
29 | 王梦祺, 安娅, 田娟, 等. 分子印迹掺氮二氧化钛的选择性光催化行为及其动力学研究[J].化工新型材料, 2021, 49(3): 186-191. |
Wang M Q, An Y, Tian J, et al. Study on selective potocatalytic activity and kinetics of molecular imprinted N-doped TiO2 [J]. New Chemical Materials, 2021, 49(3): 186-191. | |
30 | Wang A J, Peng X, Shi N, et al. Study on the preparation of the hierarchical porous CX-TiO2 composites and their selective degradation of PHE solubilized in soil washing eluent[J]. Chemosphere, 2020, 260: 127588. |
31 | 颜昭, 朱雷, 汪恂. 分子印迹TiO2光催化降解水杨酸实验研究[J]. 水处理技术, 2019, 45(4): 83-87. |
Yan Z, Zhu L, Wang X. Photocatalytic degradation of salicylic acid by molecularly imprinted TiO2 [J]. Technology of Water Treatment, 2019, 45(4): 83-87. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[3] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[15] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||