化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3912-3920.DOI: 10.11949/0438-1157.20230702
杨百玉(), 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂()
收稿日期:
2023-07-07
修回日期:
2023-09-08
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
陈春茂
作者简介:
杨百玉(1997—),女,硕士研究生,xxwldyby@163.com
基金资助:
Baiyu YANG(), Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN()
Received:
2023-07-07
Revised:
2023-09-08
Online:
2023-09-25
Published:
2023-11-20
Contact:
Chunmao CHEN
摘要:
湿式氧化工艺(WAO)是炼化企业预处理高浓度碱渣的有效手段。基于3D-EEM、GC-MS以及Orbitrap MS组合分析,在分子水平上研究了碱渣中溶解性有机物(dissolved organic matter,DOM)在WAO过程的化学转化特征。研究发现:WAO过程主要发生加氧去氢(+1O-2H和+2O-2H)、加氧(+3O)以及脱烷基化(-C2H6)反应,芳香性DOM分子结构由高环(≥5环)向低环(3环/4环)转化;弱极性DOM由硫基苯甲醛、3,4-双(乙氧基甲基)噻吩等转化为硫酸盐、噻吩甲酸和硫醚等小分子化合物;强极性DOM则由具有较低不饱和度(DBEwa 3.727)和O/Cwa (0.386)的O2~4类和O3S1类化合物转化为具有较高不饱和度(DBEwa 5.911)和O/Cwa (0.537)的O5~9类和O4~9S1类化合物。WAO预处理后极性DOM种类由1792种增至4909种,水质的可生化性提升了35%。
中图分类号:
杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920.
Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process[J]. CIESC Journal, 2023, 74(9): 3912-3920.
项目 | 指标 | 测定方法与标准 | 仪器 |
---|---|---|---|
DOM总量 分析方法 | SCOD | 重铬酸钾法 HJ 828—2017 | 承德华通CTL-12化学需氧量速测仪 |
SBOD5 | 稀释与接种法 HJ 505—2009 | 美国HACH BODTrak Ⅱ生化需氧量测试仪 | |
DOC | 燃烧氧化-非分散红外吸收法 HJ/T 104—2003 | 日本Shimadzu TOC-L CPH CN 200总有机碳测试仪 | |
DOM组成 表征方法 | SUVA254 | 测定样品在波长254 nm下的吸光度(UV254),计算得到SUVA254(UV254×100/DOC) | 日本Shimadzu UV-mini-1280UV-Vis紫外光谱仪 |
3D-EEM荧光光谱 | 激发波长(λex)和发射波长(λem)分别设置为200~550 nm和200~600 nm,步长为5 nm | 法国Horiba Scientific Aqualog 3D-EEM荧光光谱仪 | |
GC-MS | 样品利用二氯甲烷(色谱级,≥99.9%)液液萃取法进行富集,以超纯氦气为载气(1 ml/min),进样量为1.0 µl。离子源温度为250℃,四级杆温度为150℃ | 美国Agilent 7890B/GC-5977B/MSD GC-MS仪 | |
Orbitrap MS | 样品DOM用固相萃取柱(美国Agilent,Bond Elut PPL)提取,并用甲醇(HPLC级,≥99.9%)洗脱浓缩[ | 美国ThermoFisher Scientific Orbitrap Fusion型Orbitrap MS仪 |
表1 水质指标的测定方法与仪器
Table 1 Measurement methods and instruments for water quality indicators
项目 | 指标 | 测定方法与标准 | 仪器 |
---|---|---|---|
DOM总量 分析方法 | SCOD | 重铬酸钾法 HJ 828—2017 | 承德华通CTL-12化学需氧量速测仪 |
SBOD5 | 稀释与接种法 HJ 505—2009 | 美国HACH BODTrak Ⅱ生化需氧量测试仪 | |
DOC | 燃烧氧化-非分散红外吸收法 HJ/T 104—2003 | 日本Shimadzu TOC-L CPH CN 200总有机碳测试仪 | |
DOM组成 表征方法 | SUVA254 | 测定样品在波长254 nm下的吸光度(UV254),计算得到SUVA254(UV254×100/DOC) | 日本Shimadzu UV-mini-1280UV-Vis紫外光谱仪 |
3D-EEM荧光光谱 | 激发波长(λex)和发射波长(λem)分别设置为200~550 nm和200~600 nm,步长为5 nm | 法国Horiba Scientific Aqualog 3D-EEM荧光光谱仪 | |
GC-MS | 样品利用二氯甲烷(色谱级,≥99.9%)液液萃取法进行富集,以超纯氦气为载气(1 ml/min),进样量为1.0 µl。离子源温度为250℃,四级杆温度为150℃ | 美国Agilent 7890B/GC-5977B/MSD GC-MS仪 | |
Orbitrap MS | 样品DOM用固相萃取柱(美国Agilent,Bond Elut PPL)提取,并用甲醇(HPLC级,≥99.9%)洗脱浓缩[ | 美国ThermoFisher Scientific Orbitrap Fusion型Orbitrap MS仪 |
综合污染指标 | 预处理前 | 预处理后 |
---|---|---|
DOC/(mg/L) | 1147±7 | 947±4 |
SCOD/(mg/L) | 9240±224 | 2060±12 |
SBOD5/(mg/L) | 2088±27 | 633±10 |
SBOD5/SCOD | 0.23±0.03 | 0.31±0.05 |
硫化物/(mg/L) | 41701±601 | 35±2 |
640±8 | 8561±93 |
表2 碱渣经WAO预处理前后综合污染指标变化
Table 2 Changes of comprehensive pollution indicators of spent caustics before and after WAO pretreatment
综合污染指标 | 预处理前 | 预处理后 |
---|---|---|
DOC/(mg/L) | 1147±7 | 947±4 |
SCOD/(mg/L) | 9240±224 | 2060±12 |
SBOD5/(mg/L) | 2088±27 | 633±10 |
SBOD5/SCOD | 0.23±0.03 | 0.31±0.05 |
硫化物/(mg/L) | 41701±601 | 35±2 |
640±8 | 8561±93 |
项目 | 预处理前 DOM数量1792种 | 预处理后 DOM数量4909种 | |
---|---|---|---|
DOM类型 | CHO/% | 27.0 | 39.4 |
CHOS/% | 68.8 | 58.5 | |
CHON/% | 4.1 | 1.9 | |
CHONS/% | 0.1 | 0.1 | |
分子属性 | DBEwa | 3.727 | 5.911 |
O/Cwa | 0.386 | 0.537 | |
H/Cwa | 1.536 | 1.099 | |
MWwa/Da | 282 | 278 | |
NOSCwa | -0.626 | 0.091 |
表3 碱渣经WAO预处理前后的DOM分子类型及属性
Table 3 Molecular types and attributes of DOM of spent caustics before and after WAO pretreatment
项目 | 预处理前 DOM数量1792种 | 预处理后 DOM数量4909种 | |
---|---|---|---|
DOM类型 | CHO/% | 27.0 | 39.4 |
CHOS/% | 68.8 | 58.5 | |
CHON/% | 4.1 | 1.9 | |
CHONS/% | 0.1 | 0.1 | |
分子属性 | DBEwa | 3.727 | 5.911 |
O/Cwa | 0.386 | 0.537 | |
H/Cwa | 1.536 | 1.099 | |
MWwa/Da | 282 | 278 | |
NOSCwa | -0.626 | 0.091 |
1 | 周彤, 邓德刚, 秦丽姣. 石油化工废碱液处理技术开发及工业应用[J]. 现代化工, 2019, 39(6): 187-189. |
Zhou T, Deng D G, Qin L J. Development and industrial application of treatment technology for spent caustic solution in petroleum and chemical industry[J]. Modern Chemical Industry, 2019, 39(6): 187-189. | |
2 | 中华人民共和国生态环境部. 国家危险废物名录(2021年版)[J]. 中华人民共和国国务院公报, 2021(4): 18-46. |
Ministry of Environment Protection of the People’s Republic of China. National list of hazardous wastes (2021 edition)[J]. Gazette of the State Council of the People’s Republic of China, 2021(4): 18-46. | |
3 | Boucher V, Beaudon M, Ramirez P, et al. Comprehensive evaluation of non-catalytic wet air oxidation as a pretreatment to remove pharmaceuticals from hospital effluents[J]. Environmental Science: Water Research & Technology, 2021, 7(7): 1301-1314. |
4 | Ye H F, Yang B Y, Wang Q H, et al. Influences of integrated coagulation-ozonation pretreatment on the characteristics of dissolved organic pollutants (DOPs) of heavy oil electric desalting wastewaters[J]. Journal of Environmental Management, 2021, 300: 113756. |
5 | 王国栋, 唐国建. 高效生物处理技术在碱渣废水处理中的应用[J]. 石油化工安全环保技术, 2017, 33(3): 54-61, 70. |
Wang G D, Tang G J. Application of high efficient biological treatment technology in treatment of alkaline wastewater[J]. Petrochemical Safety and Environmental Protection Technology, 2017, 33(3): 54-61, 70. | |
6 | 蓝春树. EM-BAF技术在乙烯废碱液处理中的应用[J]. 化工进展, 2009, 28(S2): 199-202. |
Lan C S. Application of EM-BAF technology in the treatment of ethylene waste lye[J]. Chemical Industry and Engineering Progress, 2009, 28(S2): 199-202. | |
7 | 何晨, 何丁, 陈春茂, 等. 傅里叶变换离子回旋共振质谱在溶解性有机质组成分析中的应用[J]. 中国科学:地球科学, 2022, 52(12): 2323-2341. |
He C, He D, Chen C M, et al. Application of Fourier transform ion cyclotron resonance mass spectrometry in composition analysis of dissolved organic matter[J]. Scientia Sinica (Terrae), 2022, 52(12): 2323-2341. | |
8 | 郝瑞霞, 曹可心, 赵钢, 等. 用紫外光谱参数表征污水中溶解性有机污染物[J]. 北京工业大学学报, 2006, 32(12): 1062-1066. |
Hao R X, Cao K X, Zhao G, et al. Ultraviolet absorption spectrum characterization approach for quantitative analysis of dissolved organic contaminants in sewage[J]. Journal of Beijing University of Technology, 2006, 32(12): 1062-1066. | |
9 | Ye H F, Liu B D, Wang Q H, et al. Comprehensive chemical analysis and characterization of heavy oil electric desalting wastewaters in petroleum refineries[J]. Science of the Total Environment, 2020, 724: 138117. |
10 | 栗则, 季远玲, 张宇曦, 等. GC-MS解析炼化污水中挥发性有机物组成和变化[J]. 化工进展, 2018, 37(10): 4053-4059. |
Li Z, Ji Y L, Zhang Y X, et al. Application of GC-MS for the determination of volatile organic compounds in refinery wastewater treatment process[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 4053-4059. | |
11 | Peru K M, Thomas M J, Lozano D C P, et al. Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry: influence of acidic versus basic transfer solvent[J]. Chemosphere, 2019, 222: 1017-1024. |
12 | Dittmar T, Koch B, Hertkorn N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater[J]. Limnology and Oceanography: Methods, 2008, 6(6): 230-235. |
13 | Kou Y, Jiang J T, Yang B Y, et al. Transformation of dissolved organic matter at a full-scale petrochemical wastewater treatment plant[J]. Journal of Environmental Management, 2023, 329: 117021. |
14 | 朱大伟, 武道吉, 孙翠珍, 等. 三维荧光光谱(3D-EEM)技术在溶解性有机质(DOM)分析中的应用[J]. 净水技术, 2015, 34(1): 14-17, 28. |
Zhu D W, Wu D J, Sun C Z, et al. Application of three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectrum technology in analysis of dissolved organic matter(DOM)[J]. Water Purification Technology, 2015, 34(1): 14-17, 28. | |
15 | 孙青亮, 吴昌永, 胡翔, 等. 石化污水厂二级出水溶解性有机物分级解析研究[J]. 中国环境科学, 2012, 32(11): 2017-2022. |
Sun Q L, Wu C Y, Hu X, et al. Classification and analysis of dissolved organic matter in the effluent of a petrochemical wastewater treatment plant[J]. China Environmental Science, 2012, 32(11): 2017-2022. | |
16 | Ye H F, Chen L, Kou Y, et al. Influences of coagulation pretreatment on the characteristics of crude oil electric desalting wastewaters[J]. Chemosphere, 2021, 264: 128531. |
17 | Liu Y N, Kujawinski E B. Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from ESI FT-ICR MS[J]. PLoS One, 2015, 10(9): e0136376. |
18 | Shao L M, Deng Y T, Qiu J J, et al. DOM chemodiversity pierced performance of each tandem unit along a full-scale “MBR+NF” process for mature landfill leachate treatment[J]. Water Research, 2021, 195: 117000. |
19 | Hou C Y, Chen L, Dong Y W, et al. Unraveling dissolved organic matter in drinking water through integrated ozonation/ceramic membrane and biological activated carbon process using FT-ICR MS[J]. Water Research, 2022, 222: 118881. |
20 | 宋健健. 百万吨级乙烯装置配套含硫废碱液处理新技术[J]. 石油炼制与化工, 2023, 54(3): 96-100. |
Song J J. New treatment process of sulfur-containing spent caustic waste water from ethylene plant[J]. Petroleum Processing and Petrochemicals, 2023, 54(3): 96-100. | |
21 | 杨长生. 电化学氧化处理特殊点源含油污水实验[J]. 油气田环境保护, 2021, 31(4): 32-36. |
Yang C S. Experiment on electrochemical oxidation treatment of special point source oily wastewater[J]. Environmental Protection of Oil & Gas Fields, 2021, 31(4): 32-36. | |
22 | 张洪涛, 杨旭, 李志, 等. 煤焦制气装置处理炼化废碱渣的新途径[J]. 中外能源, 2023, 28(6): 89-93. |
Zhang H T, Yang X, Li Z, et al. A new method for treating refinery waste alkali residue in coal and coke gasification plant[J]. Sino-Global Energy, 2023, 28(6): 89-93. | |
23 | Kasuga I, Yuthawong V, Kurisu F, et al. Molecular-level comparison of dissolved organic matter in 11 major lakes in Japan by Orbitrap mass spectrometry[J]. Water Supply, 2020, 20(4): 1271-1280. |
24 | Zhang B L, Wang X N, Fang Z Y, et al. Unravelling molecular transformation of dissolved effluent organic matter in UV/ H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis[J]. Water Research, 2021, 199: 117158. |
25 | Patra D, Mishra A. Total synchronous-fluorescence scan spectra of petroleum products[J]. Analytical and Bioanalytical Chemistry, 2002, 373(4): 304-309. |
26 | Patra D, Lakshmi Sireesha K, Mishra A K. Characterization and investigation of polycyclic aromatic compounds present in petrol, diesel, kerosene and 2T oil using excitation emission matrix fluorescence[J]. Indian Journal of Chemistry, Section A. Inorganic, Physical, Theoretical & Analytical, 2001, 40A(4): 374-379. |
27 | Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. |
28 | 吴静, 曹知平, 谢超波, 等. 石化废水的三维荧光光谱特征[J]. 光谱学与光谱分析, 2011, 31(9): 2437-2441. |
Wu J, Cao Z P, Xie C B, et al. 3-D fluorescence properties of petrochemical wastewater[J]. Spectroscopy and Spectral Analysis, 2011, 31(9): 2437-2441. | |
29 | Christensen J H, Hansen A B, Mortensen J, et al. Characterization and matching of oil samples using fluorescence spectroscopy and parallel factor analysis[J]. Analytical Chemistry, 2005, 77(7): 2210-2217. |
30 | Zhang B L, Shan C, Wang S, et al. Unveiling the transformation of dissolved organic matter during ozonation of municipal secondary effluent based on FT-ICR-MS and spectral analysis[J]. Water Research, 2021, 188: 116484. |
31 | Maqbool T, Sun M M, Chen L, et al. Exploring the fate of dissolved organic matter at the molecular level in the reactive electrochemical ceramic membrane system using fluorescence spectroscopy and FT-ICR MS[J]. Water Research, 2022, 210: 117979. |
32 | 吴百春, 李玉果, 聂凡, 等. 某炼化污水处理厂水中可溶有机物的转化规律研究[J]. 工业水处理, 2022, 42(1): 133-142. |
Wu B C, Li Y G, Nie F, et al. Study on the evolution of dissolved organic compounds in the water from a petrochemical wastewater treatment plant[J]. Industrial Water Treatment, 2022, 42(1): 133-142. | |
33 | Gonsior M, Zwartjes M, Cooper W J, et al. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry[J]. Water Research, 2011, 45(9): 2943-2953. |
34 | 刘彩风, 胡海冬, 廖可薇, 等. 污水处理厂中溶解性有机硫的浓度分布和分子转化特征[J]. 环境科学学报, 2022, 42(6): 12-23. |
Liu C F, Hu H D, Liao K W, et al. Concentration and molecular transformation of dissolved organic sulfur in the wastewater treatment plant[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 12-23. | |
35 | Frank R A, Fischer K, Kavanagh R, et al. Effect of carboxylic acid content on the acute toxicity of oil sands naphthenic acids[J]. Environmental Science & Technology, 2009, 43(2): 266-271. |
36 | 任丽敏. 原油中含硫化合物的分子组成分析方法及应用[D]. 北京:中国石油大学(北京). 2019. |
Ren L M. Molecular characterization of sulfur-containing compounds in crude oils: methodology and application[D]. Beijing: China University of Petroleum, 2019. | |
37 | Hübner U, von Gunten U, Jekel M. Evaluation of the persistence of transformation products from ozonation of trace organic compounds—a critical review[J]. Water Research, 2015, 68: 150-170. |
[1] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[2] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[3] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[4] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[5] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[6] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[7] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[8] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[9] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[10] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[11] | 闫新龙, 黄志刚, 胡清勋, 张新, 胡晓燕. Cu/Co掺杂多孔炭活化过硫酸盐降解水中硝基酚研究[J]. 化工学报, 2023, 74(3): 1102-1112. |
[12] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[13] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[14] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[15] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 623
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||