化工学报 ›› 2016, Vol. 67 ›› Issue (7): 2647-2655.DOI: 10.11949/j.issn.0438-1157.20160294
谢丽, 殷紫, 尹志轩, 王悦超, 周琪
收稿日期:
2016-03-14
修回日期:
2016-04-22
出版日期:
2016-07-05
发布日期:
2016-07-05
通讯作者:
谢丽
基金资助:
国家自然科学基金项目(51378373,51178326)。
XIE Li, YIN Zi, YIN Zhixuan, WANG Yuechao, ZHOU Qi
Received:
2016-03-14
Revised:
2016-04-22
Online:
2016-07-05
Published:
2016-07-05
Supported by:
supported by the National Natural Science Foundation of China (51378373, 51178326).
摘要:
近年来,厌氧氨氧化工艺(anaerobic ammonium oxidation, Anammox)作为一种新型的脱氮技术,由于其耗能少、效率高而被应用于高氨氮废水的处理中。然而,实际运行的厌氧氨氧化工程中有时会出现亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)大量繁殖的情况,导致硝酸盐积累,脱氮效率下降。在一段式Anammox反应器中,通过控制某些影响因素,如调节体系中的溶解氧,控制游离氨和游离亚硝酸的浓度,调控碳源浓度以及外加中间产物(N2H4、NO和NH2OH)等方式,能够在维持Anammox工艺脱氮效率的同时有效抑制NOB。除了系统地综述一段式Anammox工艺中NOB抑制手段以外,将进一步讨论实际Anammox工程应用中抑制NOB大量繁殖行之有效的手段。
中图分类号:
谢丽, 殷紫, 尹志轩, 王悦超, 周琪. 一段式厌氧氨氧化工艺亚硝酸盐氧化菌抑制方法研究进展[J]. 化工学报, 2016, 67(7): 2647-2655.
XIE Li, YIN Zi, YIN Zhixuan, WANG Yuechao, ZHOU Qi. A review on regulation methods of nitrite oxidizing bacteria in one-stage anaerobic ammonia oxidation process[J]. CIESC Journal, 2016, 67(7): 2647-2655.
[1] | MULDER A, VANDEGRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor [J]. FEMS Microbiol. Ecol., 1995, 16(3): 177-183. |
[2] | HU Z, LOTTI T, VAN LOOSDRECHT M, et al. Nitrogen removal with the anaerobic ammonium oxidation process [J]. Biotechnology Letters, 2013, 35(8): 1145-1154. |
[3] | LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/Anammox experiences-an application survey [J]. Water Research, 2014, 55: 292-303. |
[4] | THIRD K A, SLIEKERS A O, KUENEN J G, et al. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria [J]. Syst. Appl. Microbiol., 2001, 24(4): 588-596. |
[5] | WETT B. Solved upscaling problems for implementing deammonification of rejection water [J]. Water Science & Technology, 2006, 53(12): 121-128. |
[6] | VLAEMINCK S E, TERADA A, SMETS B F, et al. Nitrogen removal from digested black water by one-stage partial nitritation and Anammox [J]. Environ. Sci. Technol., 2009, 43(13): 5035-5041. |
[7] | VAN HULLE S W H, VANDEWEYER H J P, MEESSCHAERT B D, et al. Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams [J]. Chemical Engineering Journal, 2010, 162(1): 1-20. |
[8] | ABMA W R, SCHULTZ C E, MULDER J W, et al. Full-scale granular sludge Anammox process [J]. Water Science & Technology, 2007, 55(8/9): 27-33. |
[9] | JOSS A, DERLON N, CYPRIEN C, et al. Combined nitritation-Anammox: advances in understanding process stability [J]. Environ. Sci. Technol., 2011, 45(22): 9735-9742. |
[10] | JARDIN N, HENNERKES J. Full-scale experience with the deammonification process to treat high strength sludge water - a case study [J]. Water Science and Technology, 2012, 65(3): 447-455. |
[11] | STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Appl. Microbiol. Biot., 1998, 50(5): 589-596. |
[12] | STROUS M, VANGERVEN E, KUENEN J G, et al. Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge [J]. Appl. Environ. Microbiol., 1997, 63(6): 2446-2448. |
[13] | WANG H L, JI G D, BAI X Y. Enhanced long-term ammonium removal and its ranked contribution of microbial genes associated with nitrogen cycling in a lab-scale multimedia biofilter [J]. Bioresource Technol., 2015, 196: 57-64. |
[14] | NI S Q, ZHANG J. Anaerobic ammonium oxidation: from laboratory to full-scale application [J]. Biomed. Res. Int., 2013, 2013(2): 469360. |
[15] | LIANG Y, LI D, ZHANG X, et al. Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors [J]. Bioresource Technol., 2014, 175: 189-194. |
[16] | ISANTA E, REINO C, CARRERA J, et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor [J]. Water Res., 2015, 80: 149-158. |
[17] | HUNIK J H, TRAMPER J, WIJFFELS R H. A strategy to scale-up nitrification processes with immobilized cells of Nitrosomonas europaea and Nitrobacter agilis [J]. Bioprocess Engineering, 1994, 11(2): 73-82. |
[18] | MA B, BAO P, WEI Y, et al. Suppressing nitrite-oxidizing bacteria growth to achieve nitrogen removal from domestic wastewater via Anammox using intermittent aeration with low dissolved oxygen [J]. Sci. Rep., 2015, 5. doi:10.1038/srep13048. |
[19] | PELLICER-NACHER C, FRANCK S, GULAY A, et al. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics [J]. Microb. Biotechnol., 2014, 7(1): 32-43. |
[20] | MA B, WANG S, CAO S, et al. Biological nitrogen removal from sewage via Anammox: recent advances [J]. Bioresource Technol., 2016, 200: 981-990. |
[21] | PELLICER-NACHER C, SUN S, LACKNER S, et al. Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal: experimental demonstration [J]. Environ. Sci. Technol., 2010, 44(19): 7628-7634. |
[22] | SOBOTKA D, CZERWIONKA K, MAKINIA J. The effects of different aeration modes on ammonia removal from sludge digester liquors in the nitritation-Anammox process [J]. Water Sci. Technol., 2015, 71(7): 986-995. |
[23] | YANG J, TRELA J, ZUBROWSKA-SUDOL M, et al. Intermittent aeration in one-stage partial nitritation/Anammox process [J]. Ecol. Eng., 2015, 75: 413-420. |
[24] | YOO H, AHN K H, LEE H J, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently-aerated reactor [J]. Water Res., 1999, 33(1): 145-154. |
[25] | FERNANDEZ I, DOSTA J, FAJARDO C, et al. Short- and long-term effects of ammonium and nitrite on the Anammox process [J]. J. Environ. Manage., 2012, 95 (Suppl): 170-174. |
[26] | ANTHONISEN A C, LOEHR R C, PRAKASAM T B, et al. Inhibition of nitrification by ammonia and nitrous acid [J]. Water Pollution Control Federation, 1976, 48(5): 835-852. |
[27] | VADIVELU V M, KELLER J, YUAN Z. Effect of free ammonia on the respiration and growth processes of an enriched Nitrobacter culture [J]. Water Res., 2007, 41(4): 826 - 834. |
[28] | STUVEN R, BOCK E. Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater [J]. Water Res., 2001, 35(8): 1905-1914. |
[29] | LI S, CHEN Y P, LI C, et al. Influence of free ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process [J]. Appl. Biochem. Biotechnol., 2012, 167(4): 694-704. |
[30] | PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid [J]. Process Biochemistry, 2009, 44(6): 631-640. |
[31] | 郑平, 胡宝兰, 徐向阳. 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004. ZHENG P, HU B L, XU X Y. Novel Biological Nitrogen Removal: Theory and Technology[M]. Beijing: Science Press, 2004. |
[32] | ZHANG X, LI D, LIANG Y, et al. Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels [J]. Bioresource Technol., 2014, 152: 185-191. |
[33] | 王亚宜, 黎力, 马骁, 等. 厌氧氨氧化菌的生物特性及CANON厌氧氨氧化工艺[J]. 环境科学学报, 2014, 34(6): 1362-1374. WANG Y Y, LI L, MA X, et al. Biocharacteristics of Anammox bacterai and CANON Anammox process[J]. Acta Scientiae Circumstantaie, 2014, 34(6): 1362-1374. |
[34] | DAPENA-MORA A, FERNANDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production [J]. Enzyme and Microbial Technology, 2007, 40(4): 859-865. |
[35] | STROUS M, KUENEN J G, JETTEN M S M. Key physiology of anaerobic ammonium oxidation [J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. |
[36] | 委燕, 王淑莹, 马斌, 等. 缺氧FNA对氨氧化菌和亚硝酸盐氧化菌的选择性抑菌效应[J]. 化工学报, 2014, 65(10): 4145-4149. WEI Y, WANG S Y, MA B, et al. Selective inhibition effect of free nitrous acid on ammonium oxidizing bacteria and nitrite oxidizing bacteria under anoxic condition[J]. CIESC Journal, 2014, 65(10): 4145-4149. |
[37] | 杨洋, 左剑恶, 沈平, 等. 温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J]. 环境科学, 2006, 27(4): 692-695. YANG Y, ZUO J E, SHEN P, et al. Influence of temperature, pH value and organic substance on activity of ANAMMOX sludge[J]. Environmental Science, 2006, 27(4): 692-695. |
[38] | 高大文, 彭永臻, 王淑莹. 控制pH实现短程硝化反硝化生物脱氮技术[J]. 哈尔滨工业大学学报, 2005, 37(12): 1664-1666. GAO D W, PENG Y Z, WANG S Y. Nitrogen removal from wastewater via shortcut nitrification - denitrification achieved by controlling pH[J]. Journal of Harbin Institute of Technology, 2005, 37(12): 1664-1666. |
[39] | LANGONE M, YAN J, HAAIJER S C, et al. Coexistence of nitrifying, Anammox and denitrifying bacteria in a sequencing batch reactor [J]. Frontiers in Microbiology, 2014, 5: 28. |
[40] | PUYOL D, CARVAJAL-ARROYO J M, LI G B, et al. High pH (and not free ammonia) is responsible for Anammox inhibition in mildly alkaline solutions with excess of ammonium [J]. Biotechnology Letters, 2014, 36(10): 1981-1986. |
[41] | FUX C, BOEHLER M, HUBER P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox) in a pilot plant [J]. Journal of Biotechnology, 2002, 99(3): 295-306. |
[42] | SVEHLA P, BARTACEK J, PACEK L, et al. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: influence of feeding strategy [J]. Chemical Papers, 2014, 68(7): 871-878. |
[43] | 胡勇有, 梁辉强, 朱静平, 等. 有机碳源环境下的厌氧氨氧化批式实验[J]. 华南理工大学学报(自然科学版), 2007, 35(6): 116-119. HU Y Y, LIANG H Q, ZHU J P, et al. Batch expermients of anaerobic ammonium oxidation process with organic carbon[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(6): 116-119. |
[44] | 操沈彬, 王淑莹, 吴程程, 等. 有机物对厌氧氨氧化系统的冲击影响[J]. 中国环境科学, 2013, 33(12): 2164-2169. CAO S B, WANG S Y, WU C C, et al. Shock effect of organic matters on anaerobic ammonia oxidation system[J]. China Environmental Science, 2013, 33(12): 2164-2169. |
[45] | DENECKE M, LIEBIG T. Effect of carbon dioxide on nitrification rates [J]. Bioprocess and Biosystems Engineering, 2003, 25(4): 249-253. |
[46] | GUISASOLA A, PETZET S, BAEZA J A, et al. Inorganic carbon limitations on nitrification: experimental assessment and modelling [J]. Water Res., 2007, 41(2): 277- 286. |
[47] | MA Y, SUNDAR S, PARK H, et al. The effect of inorganic carbon on microbial interactions in a biofilm nitritation-Anammox process [J]. Water Res., 2015, 70: 246-254. |
[48] | TOKUTOMI T, SHIBAYAMA C, SODA S, et al. A novel control method for nitritation: the domination of ammonia-oxidizing bacteria by high concentrations of inorganic carbon in an airlift-fluidized bed reactor [J]. Water Res., 2010, 44(14): 4195-4203. |
[49] | KARTAL B, MAALCKE W J, DE ALMEIDA N M, et al. Molecular mechanism of anaerobic ammonium oxidation [J]. Nature, 2011, 479(7371): 127-130. |
[50] | 蔡庆, 丁佳佳. N2H4强化厌氧氨氧化机理及动力学特性[J]. 水处理技术, 2015, 41(5): 73-77. CAI Q, DING J J. The mechanism and dynamic characteristic of enhancing anaerobic ammonium oxidation (Anammox) process[J]. Technology of Water Treatment, 2015, 41(5): 73-77. |
[51] | STARKENBURG S R, ARP D J, BOTTOMLEY P J. Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255 [J]. Environmental Microbiology, 2008, 10(11): 3036-3042. |
[52] | ZEKKER I, KROON K, RIKMANN E, et al. Accelerating effect of hydroxylamine and hydrazine on nitrogen removal rate in moving bed biofilm reactor [J]. Biodegradation, 2012, 23(5): 739-749. |
[53] | YAO Z B, CAI Q, ZHANG D J, et al. The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N2H4 addition [J]. Bioresource Technol., 2013, 146: 591-596. |
[54] | XIAO P, LU P, ZHANG D, et al. Effect of trace hydrazine addition on the functional bacterial community of a sequencing batch reactor performing completely autotrophic nitrogen removal over nitrite [J]. Bioresource Technol., 2014, 175: 216-223. |
[55] | DIRK ZART I S E B. Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha [J]. International Journal of General and Molecular Microbiology, 2000, 77(1): 49-55. |
[56] | COURTENS E N, DE CLIPPELEIR H, VLAEMINCK S E, et al. Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite [J]. J. Biotechnol., 2015, 193: 120-122. |
[57] | HAO O J, CHEN J M. Factors affecting nitrite buildup in submerged filter system [J]. Journal of Environmental Engineering-ASCE, 1994, 120(5): 1298-1307. |
[58] | KINDAICHI T, OKABE S, SATOH H, et al. Effects of hydroxylamine on microbial community structure and function of autotrophic nitrifying biofilms determined by in situ hybridization and the use of microelectrodes [J]. Water Science and Technology, 2004, 49(11/12): 61-68. |
[59] | WANG Y, WANG Y, WEI Y, et al. In-situ restoring nitrogen removal for the combined partial nitritation-Anammox process deteriorated by nitrate build-up [J]. Biochemical Engineering Journal, 2015, 98: 127-136. |
[60] | WETT B, OMARI A, PODMIRSEG S, et al. Going for mainstream deammonification from bench to full scale for maximized resource efficiency [J]. Water Sci. Technol., 2013, 68(2): 283-289. |
[1] | 张立, 吴建华, 崔舒惠, 严锋, 孙浩, 钱飞跃. PN/A颗粒污泥-固相反硝化组合工艺的菌群功能解析[J]. 化工学报, 2022, 73(11): 5128-5137. |
[2] | 陈唐维, 潘志成, 陈滢, 刘敏, 陈婷婷, 钟亚萍. 旋流器分流比对剩余污泥的释碳性能影响[J]. 化工学报, 2021, 72(11): 5761-5769. |
[3] | 巩有奎, 彭永臻. 运行方式对SBBR亚硝酸型同步脱氮及N2O释放的影响[J]. 化工学报, 2019, 70(6): 2289-2297. |
[4] | 马双忱, 范紫瑄, 万忠诚, 陈嘉宁, 张净瑞, 马采妮. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964-1972. |
[5] | 巩有奎, 任丽芳, 彭永臻. 不同DO下SBBR亚硝酸型同步脱氮及N2O释放特性[J]. 化工学报, 2019, 70(4): 1550-1558. |
[6] | 刘小芳, 郭海燕, 张胜男, 黄靓. 聚糖菌反硝化影响因素及内碳源转化特性[J]. 化工学报, 2019, 70(3): 1127-1134. |
[7] | 孙雅雯, 张建华, 彭永臻, 王淑莹. 外加碳源类型对A2/O-BCO系统脱氮除磷性能的影响[J]. 化工学报, 2018, 69(8): 3626-3634. |
[8] | 韩红桂, 刘峥, 乔俊飞. 基于区间二型模糊神经网络污水处理过程溶解氧浓度控制[J]. 化工学报, 2018, 69(3): 1182-1190. |
[9] | 周红标. 基于自组织模糊神经网络的污水处理过程溶解氧控制[J]. 化工学报, 2017, 68(4): 1516-1524. |
[10] | 荣广健, 张佑红, 陈艳, 谌颉, 黄萌, 周锋. 粘质沙雷氏菌产灵菌红素的碳源分析、菌种诱变及动力学[J]. 化工学报, 2017, 68(1): 244-255. |
[11] | 张倩, 王淑莹, 苗圆圆, 王晓霞, 彭永臻. 间歇低氧曝气下CANON工艺处理生活污水的启动[J]. 化工学报, 2017, 68(1): 289-296. |
[12] | 赵梦月, 彭永臻, 王博, 郭媛媛. SBR工艺实现长期稳定的部分短程硝化[J]. 化工学报, 2016, 67(6): 2525-2532. |
[13] | 乔俊飞, 付文韬, 韩红桂. 基于SOTSFNN的溶解氧浓度控制方法[J]. 化工学报, 2016, 67(3): 960-966. |
[14] | 韩改堂, 乔俊飞, 韩红桂. 基于递归模糊神经网络的污水处理控制方法[J]. 化工学报, 2016, 67(3): 954-959. |
[15] | 赵梦月, 王博, 郭媛媛, 彭永臻. 部分短程硝化SBR实现低C/N比生活污水碳源的充分利用[J]. 化工学报, 2016, 67(11): 4825-4836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||