化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5761-5769.DOI: 10.11949/0438-1157.20210598
陈唐维1(),潘志成2,3,陈滢1,刘敏1(),陈婷婷3,钟亚萍2
收稿日期:
2021-04-29
修回日期:
2021-09-08
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
刘敏
作者简介:
陈唐维(1997—),女,硕士研究生,基金资助:
Tangwei CHEN1(),Zhicheng PAN2,3,Ying CHEN1,Min LIU1(),Tingting CHEN3,Yaping ZHONG2
Received:
2021-04-29
Revised:
2021-09-08
Online:
2021-11-05
Published:
2021-11-12
Contact:
Min LIU
摘要:
基于四川省某城市污水厂处理200 t/h剩余污泥的旋流器运行情况,比较了旋流器分流比(F)对底流和溢流污泥的形貌、污泥沉降性、污泥浓度、成分变化和碳源释放的影响,探究了污泥旋流释放物质作为反硝化碳源的可行性。结果表明:污泥经过旋流器处理后,底流污泥结构变得密实;溢流污泥松散。在不同分流比条件下,底流和溢流污泥蛋白质和多糖比值(PN/PS)均增大,底流污泥体积指数(SVI)较进口均降低。但是,溢流污泥在F<30%时SVI增大,在F≥30%时SVI降低。污泥的释碳情况随分流比不同而有变化,当F=30%时,底流污泥碳源释放量达到最大。在此分流比条件下,底流污泥反硝化速率较进口污泥和溢流污泥高,底流污泥旋流释放的碳源反硝化速率达到0.81 mg/(g·h),与分析级乙酸钠碳源相当(0.82 mg/(g·h)),高于污水厂常用的工业级乙酸钠(0.64 mg/(g·h))和微生物复合碳源(0.66 mg/(g·h))。污泥旋流释放的SCOD和蛋白质可补充反硝化碳源,减少外碳源投加,为污水处理厂升级改造提供技术借鉴。
中图分类号:
陈唐维, 潘志成, 陈滢, 刘敏, 陈婷婷, 钟亚萍. 旋流器分流比对剩余污泥的释碳性能影响[J]. 化工学报, 2021, 72(11): 5761-5769.
Tangwei CHEN, Zhicheng PAN, Ying CHEN, Min LIU, Tingting CHEN, Yaping ZHONG. Effect of hydrocyclone split ratio on carbon release performance of excess sludge[J]. CIESC Journal, 2021, 72(11): 5761-5769.
COD/(mg/L) | TN/(mg/L) | TP/(mg/L) | SS/(mg/L) | |
---|---|---|---|---|
32~627 | 9~43 | 0.5~5.4 | 79~844 | 8~64 |
表1 污水处理厂进水水质情况
Table 1 Influent quality of wastewater treatment plant
COD/(mg/L) | TN/(mg/L) | TP/(mg/L) | SS/(mg/L) | |
---|---|---|---|---|
32~627 | 9~43 | 0.5~5.4 | 79~844 | 8~64 |
图4 不同分流比条件下处理污泥MLVSS/MLSS值变化与污泥铁含量分析
Fig.4 Changes of MLVSS / MLSS values of sludge treated with different split ratio and analysis of iron content in sludge
图8 污泥旋流释放碳源与外碳源的反硝化性能比较
Fig.8 Comparison of denitrification performance of carbon source from sludge treated by hydrocyclone and external carbon source
图9 不同分流比条件下处理污泥固相蛋白质和多糖浓度变化
Fig.9 Changes in polysaccharide and protein concentrations in the mud phase after hydrocyclone treatment with different split ratio
1 | Yan P, Ji F Y, Wang J, et al. Evaluation of sludge reduction and carbon source recovery from excess sludge by the advanced sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER) wastewater treatment process[J]. Bioresource Technology, 2013, 150: 344-351. |
2 | Ferrentino R, Andreottola G. Investigation of sludge solubilization and phosphorous release in anaerobic side-stream reactor with a low pressure swirling jet hydrodynamic cavitation treatment[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104389. |
3 | Lu Q H, Yu Z H, Wang L, et al. Sludge pre-treatments change performance and microbiome in methanogenic sludge digesters by releasing different sludge organic matter[J]. Bioresource Technology, 2020, 316: 123909. |
4 | Guo L, Guo Y D, Sun M, et al. Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms[J]. Environmental Science and Pollution Research, 2018, 25(13): 13079-13092. |
5 | Mokhayeri Y, Riffat R, Takacs I, et al. Characterizing denitrification kinetics at cold temperature using various carbon sources in lab-scale sequencing batch reactors[J]. Water Science and Technology, 2008, 58(1): 233-238. |
6 | Chu G Y, Yu D S, Wang X X, et al. Comparison of nitrite accumulation performance and microbial community structure in endogenous partial denitrification process with acetate and glucose served as carbon source[J]. Bioresource Technology, 2021, 320: 124405. |
7 | Feng X C, Bao X, Che L, et al. Enhance biological nitrogen and phosphorus removal in wastewater treatment process by adding food waste fermentation liquid as external carbon source[J]. Biochemical Engineering Journal, 2021, 165: 107811. |
8 | Xu R L, Fan Y B, Wei Y S, et al. Influence of carbon sources on nutrient removal in A2/O-MBRs: availability assessment of internal carbon source[J]. Journal of Environmental Sciences, 2016, 48: 59-68. |
9 | Xin X D, She Y C, Hong J M. Insights into microbial interaction profiles contributing to volatile fatty acids production via acidogenic fermentation of waste activated sludge assisted by calcium oxide pretreatment[J]. Bioresource Technology, 2021, 320: 124287. |
10 | Geng Y K, Yuan L, Liu T, et al. Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery[J]. Applied Energy, 2020, 275: 115291. |
11 | Elalami D, Monlau F, Carrere H, et al. Effect of coupling alkaline pretreatment and sewage sludge co-digestion on methane production and fertilizer potential of digestate[J]. Science of the Total Environment, 2020, 743: 140670. |
12 | Yang Z, Kang X Y, Chen B, et al. Effects of alkali, autoclaving, and Fe+ autoclaving pretreatment on anaerobic digestion performance of coking sludge from the perspective of sludge extracts and methane production[J]. Environmental Science and Pollution Research, 2021, 28(11): 13151-13161. |
13 | Toutian V, Barjenbruch M, Loderer C, et al. Pilot study of thermal alkaline pretreatment of waste activated sludge: seasonal effects on anaerobic digestion and impact on dewaterability and refractory COD[J]. Water Research, 2020, 182: 115910. |
14 | Ahn K H, Yeom I T, Park K Y, et al. Reduction of sludge by ozone treatment and production of carbon source for denitrification[J] Water Science and Technology, 2002, 46(11/12): 121-125. |
15 | Na S H, Shon H K, Kim J H. Minimization of excess sludge and cryptic growth of microorganisms by alkaline treatment of activated sludge[J]. Korean Journal of Chemical Engineering, 2011, 28(1): 164-169. |
16 | Xu Y X, Wang H L, Wang Z H, et al. Hydrocyclone breakage of activated sludge to exploit internal carbon sources and simultaneously enhance microbial activity[J]. Process Safety and Environmental Protection, 2018, 117: 651-659. |
17 | Sun Y X, Liu Y, Zhang Y H, et al. Hydrocyclone-induced pretreatment for sludge solubilization to enhance anaerobic digestion[J]. Chemical Engineering Journal, 2019, 374: 1364-1372. |
18 | Liu Y, Wang H L, Xu Y X, et al. Sludge disintegration using a hydrocyclone to improve biological nutrient removal and reduce excess sludge[J]. Separation and Purification Technology, 2017, 177: 192-199. |
19 | Lippert T, Bandelin J, Schlederer F, et al. Effects of ultrasonic reactor design on sewage sludge disintegration[J]. Ultrasonics Sonochemistry, 2020, 68: 105223. |
20 | Liu J W, Zhao M F, Lv C, et al. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: performance, kinetics and energy recovery[J]. Environmental Research, 2020, 189: 109856. |
21 | Odnell A, Recktenwald M, Stensén K, et al. Activity, life time and effect of hydrolytic enzymes for enhanced biogas production from sludge anaerobic digestion[J]. Water Research, 2016, 103: 462-471. |
22 | Ma B, Peng Y Z, Wei Y, et al. Free nitrous acid pretreatment of wasted activated sludge to exploit internal carbon source for enhanced denitrification[J]. Bioresource Technology, 2015, 179: 20-25. |
23 | Xu Y X, Fang Y Y, Wang Z H, et al. In-situ sludge reduction and carbon reuse in an anoxic/oxic process coupled with hydrocyclone breakage[J]. Water Research, 2018, 141: 135-144. |
24 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
Fu P B, Huang Y, Wang J G, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
25 | Huang X H, Lu Y Y, Wu G B, et al. Research on the experiment of the enhancement removal of fine sand by hydrocyclone in sewage treatment plant[J]. Environmental Science and Pollution Research, 2021, 28(1): 337-353. |
26 | Khatri N, Khatri K K, Sharma A. Enhanced energy saving in wastewater treatment plant using dissolved oxygen control and hydrocyclone[J]. Environmental Technology & Innovation, 2020, 18: 100678. |
27 | Noguchi H, Fong E, Oo M H, et al. Alternative approach to improving operating flux of MBR[J]. Water Practice and Technology, 2018, 13(1): 39-44. |
28 | Xu J P, Sun Y X, Liu Y, et al. In-situ sludge settleability improvement and carbon reuse in SBR process coupled with hydrocyclone[J]. Science of the Total Environment, 2019, 695: 133825. |
29 | Liu Y, Wang H L, Xu Y X, et al. Achieving enhanced denitrification via hydrocyclone treatment on mixed liquor recirculation in the anoxic/aerobic process[J]. Chemosphere, 2017, 189: 206-212. |
30 | Liu Y, Wang H L. Trace dissolved oxygen removal using a hydrocyclone to enhance denitrification[J]. Chemical Engineering & Technology, 2018, 41(7): 1425-1432. |
31 | Bai Z S, Hu X X, Wang B J, et al. Optimization of shaft-seal water system of cutter suction dredger based on high-efficiency centrifugal separation technology[J]. Separation and Purification Technology, 2020, 236: 116267. |
32 | Yang Q, Li Z M, Lv W J, et al. On the laboratory and field studies of removing fine particles suspended in wastewater using mini-hydrocyclone[J]. Separation and Purification Technology, 2013, 110: 93-100. |
33 | 唐子腾, 常玉龙, 徐磊, 等. 螺旋并联分配管对旋风分离器分离性能的影响[J]. 化工学报, 2018, 69(11): 4770-4777. |
Tang Z T, Chang Y L, Xu L, et al. Effects of spiral channel on separation efficiency in cyclones[J]. CIESC Journal, 2018, 69(11): 4770-4777. | |
34 | 黄聪, 汪华林, 陈聪, 等. 微旋流器组并联配置性能对比: U-U型与Z-Z型[J]. 化工学报, 2013, 64(2): 624-632. |
Huang C, Wang H L, Chen C, et al. Performance comparison between U-U and Z-Z type parallel arrangement of mini-hydrocyclone group[J]. CIESC Journal, 2013, 64(2): 624-632. | |
35 | Chang Y L, Wang H L, Jin J H, et al. Flow distribution and pressure drop in UZ-type mini-hydrocyclone group arranged in compact parallel manifolds[J]. Experimental Thermal and Fluid Science, 2019, 100: 114-123. |
36 | 许佳平. 剩余污泥旋流分选及利用研究[D]. 上海: 华东理工大学, 2019. |
Xu J P. Excess sludge sorting and utilization by a mini-hydrocyclone[D]. Shanghai: East China University of Science and Technology, 2019. | |
37 | 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration. Methods for the Monitoring and Analysis of Water and Wastewater [M].4th ed. Beijing: China Environmental Science Press, 2002. | |
38 | 徐银香. 活性污泥旋流释碳工艺研究[D]. 上海: 华东理工大学, 2016. |
Xu Y X. Process study on the release of carbon sources in the activated sludge by a carbon-release hydrocyclone[D]. Shanghai: East China University of Science and Technology, 2016. | |
39 | Wang H, Li X F, Wang X H, et al. Insight into the distribution of metallic elements in membrane bioreactor: influence of operational temperature and role of extracellular polymeric substances[J]. Journal of Environmental Science, 2019, 76: 111-120. |
40 | 方元元. 缺氧/好氧工艺回流液旋流释碳机制及应用研究[D]. 上海: 华东理工大学, 2017. |
Fang Y Y. Study on carbon-release mechanism and application of recycled liquid in anoxic/oxic process[D]. Shanghai: East China University of Science and Technology, 2017. | |
41 | Li D, Lv Y, Zeng H P, et al. Startup and long term operation of enhanced biological phosphorus removal in continuous-flow reactor with granules[J]. Bioresource Technology, 2016, 212: 92-99. |
42 | Li S, Li D, Ye X S, et al. Effect of different operational modes on the performance of granular sludge in continuous-flow systems and the successions of microbial communities[J]. Bioresource Technology, 2020, 299: 122573. |
43 | 张杰, 劳会妹, 李冬, 等. 不同停曝比对连续流亚硝化颗粒污泥运行的影响[J]. 环境科学, 2020, 41(11): 5097-5105. |
Zhang J, Lao H M, Li D, et al. Effect of different ratios of anaerobic time and aeration time on the operation of a continuous-flow reactor with partial nitrification granules[J]. Environmental Science, 2020, 41(11): 5097-5105. | |
44 | 张杰, 劳会妹, 李冬, 等. 高频曝停下停曝时间对亚硝化颗粒污泥性能的影响[J]. 环境科学, 2020, 41(1): 360-367. |
Zhang J, Lao H M, Li D, et al. Effect of on/off aeration time ratio under high frequency on/off aeration on performance of nitrosated granular sludge[J]. Environmental Science, 2020, 41(1): 360-367. | |
45 | Rusanowska P, Cydzik-Kwiatkowska A, Świątczak P, et al. Changes in extracellular polymeric substances (EPS) content and composition in aerobic granule size-fractions during reactor cycles at different organic loads[J]. Bioresource Technology, 2019, 272: 188-193. |
46 | Tian J Y, Wang H L, Lv W, et al. Enhancement of pollutants hydrocyclone separation by adjusting back pressure ratio and pressure drop ratio[J]. Separation and Purification Technology, 2020, 240: 116604. |
47 | Huang Y, Li J P, Zhang Y H, et al. High-speed particle rotation for coating oil removal by hydrocyclone[J]. Separation and Purification Technology, 2017, 177: 263-271. |
48 | Duan S Q, Meng X H, Zhang R, et al. Experimental and computational investigation of mixing and separation performance in a liquid-liquid cyclone reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 23317-23329. |
49 | 武碧鑫, 邱广明, 郭琳琳, 等. 基于氧化还原电位和pH的SBR工艺脱氮过程的实验研究[J]. 环境工程, 2019, 37(8): 100-103. |
Wu B X, Qiu G M, Guo L L, et al. Experimental study on SBR process for nitrogen removal process based on oxidation-reduction potential and pH[J]. Environmental Engineering, 2019, 37(8): 100-103. | |
50 | Kim T H, Nam Y K, Park C, et al. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification[J]. Bioresource Technology, 2009, 100(23): 5694-5699. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[5] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[10] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[11] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[12] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[13] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[14] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[15] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||