化工学报 ›› 2016, Vol. 67 ›› Issue (7): 2656-2671.DOI: 10.11949/j.issn.0438-1157.20160209
童颖佳, 邬文嘉, 彭辉, 刘陆罡, 黄和, 纪晓俊
收稿日期:
2016-02-26
修回日期:
2016-04-23
出版日期:
2016-07-05
发布日期:
2016-07-05
通讯作者:
纪晓俊
基金资助:
国家重点基础研究发展计划项目(2011CBA00800);国家自然科学基金项目(21376002,21476111);国家高技术研究发展计划项目(2011AA02A207);江苏高校优势学科建设工程资助项目。
TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun
Received:
2016-02-26
Revised:
2016-04-23
Online:
2016-07-05
Published:
2016-07-05
Supported by:
supported by the National Basic Research Program of China (2011CBA00800), the National Natural Science Foundation of China (21376002, 21476111), the National High Technology Research and Development Program of China (2011AA02A207) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
摘要:
2,3-丁二醇(2,3-BD)是一种重要的微生物代谢产物,广泛应用于食品、医药、化工等多个领域。微生物合成2,3-BD的效率不高一直制约着其生物制造工业化进程,应用代谢工程的理论和方法优化微生物的代谢途径有望解决这一问题。本文全面总结了近年来微生物合成2,3-BD研究过程中的菌株改造和构建技术,包括过表达合成途径中的关键酶编码基因、敲除旁路代谢途径关键酶编码基因、应用辅因子工程手段对天然菌株代谢网络进行重新设计和合理改造,以及利用合成生物学技术在模式菌株中构建全新的代谢途径,实现2,3-BD的高效生物合成。最后,本文对未来的研究方向进行了展望,提出了进一步利用先进的合成生物学方法构建高效细胞工厂的指导性建议。
中图分类号:
童颖佳, 邬文嘉, 彭辉, 刘陆罡, 黄和, 纪晓俊. 微生物合成2,3-丁二醇的代谢工程[J]. 化工学报, 2016, 67(7): 2656-2671.
TONG Yingjia, WU Wenjia, PENG Hui, LIU Lugang, HUANG He, JI Xiaojun. Metabolic engineering for efficient microbial production of 2,3-butanediol[J]. CIESC Journal, 2016, 67(7): 2656-2671.
[1] | TONG Y J, JI X J, SHEN M Q, et al. Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)- 2, 3-butanediol production [J]. Applied Microbiology & Biotechnology, 2016, 100(2): 637-647. |
[2] | JI X J, HUANG H, OUYANG P K. Microbial 2, 3-butanediol production: a state-of-the-art review [J]. Biotechnology Advances, 2011, 29(3): 351-364. |
[3] | CELINSKA E, GRAJEK W. Biotechnological production of 2, 3-butanediol-current state and prospects [J]. Biotechnology Advances, 2009, 27(6): 715-725. |
[4] | 纪晓俊, 聂志奎, 黎志勇, 等. 生物制造2, 3-丁二醇: 回顾与展望 [J]. 化学进展, 2010, 22(12): 2450-2461. JI X J, NIE Z K, LI Z Y, et al. Biotechnological production of 2, 3-butanediol [J]. Progress in Chemistry, 2010, 22(12): 2450-2461. |
[5] | 沈梦秋, 纪晓俊, 聂志奎, 等. 生物制造不同立体构型2, 3-丁二醇: 合成机理与实现方法 [J]. 催化学报, 2013, 34(2): 351-360. SHEN M Q, JI X J, NIE Z K, et al. Biotechnological production of 2, 3-butanediol stereoisomers: synthetic mechanism and realized methods [J]. Chinese Journal of Catalysis, 2013, 34(2): 351-360. |
[6] | ZENG A P, SABRA W. Microbial production of diols as platform chemicals: recent progresses [J]. Current Opinion in Biotechnology, 2011, 22(6): 749-757. |
[7] | 付晶, 王萌, 刘维喜, 等. 生物法制备2, 3-丁二醇的最新进展 [J]. 化学进展, 2012, 24(11): 2268-2276. FU J, WANG M, LIU W X, et al. Latest advances of microbial production of 2, 3-butanediol [J]. Progress in Chemistry, 2012, 24(11): 2268-2276. |
[8] | MA C, WANG A, QIN J, et al. Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM [J]. Appl. Microbiol. Biotechnol., 2009, 82(1): 49-57. |
[9] | CHO S, KIM T, WOO H M, et al. Enhanced 2, 3-butanediol production by optimizing fermentation conditions and engineering Klebsiella oxytoca M1 through overexpression of acetoin reductase [J]. Plos One, 2015, 10(9): e0138109. |
[10] | JUNG M Y, JUNG H M, LEE J, et al. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2, 3-butanediol production [J]. Biotechnol. Biofuels, 2015, 8(1): 1-12. |
[11] | LI L X, LI K, WANG Y, et al. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R, 3R)- 2, 3-butanediol from lignocellulose-derived sugars [J]. Metabolic Engineering, 2015, 28: 19-27. |
[12] | FU J, WANG Z, CHEN T, et al. NADH plays the vital role for chiral pure D-(-)-2, 3-butanediol production in Bacillus subtilis under limited oxygen conditions [J]. Biotechnology and Bioengineering, 2014, 111(10): 2126-2131. |
[13] | LI L, ZHANG L, LI K, et al. A newly isolated Bacillus licheniformis strain thermophilically produces 2, 3-butanediol, a platform and fuel bio-chemical [J]. Biotechnol Biofuels, 2013, 6(1): 213-223. |
[14] | YANG T, RAO Z, ZHANG X, et al. Improved production of 2, 3-butanediol in Bacillus amyloliquefaciens by over-expression of glyceraldehyde-3-phosphate dehydrogenase and 2, 3-butanediol dehydrogenase [J]. Plos One, 2013, 8(10): e76149. |
[15] | HAESSLER T, SCHIEDER D, PFALLER R, et al. Enhanced fed-batch fermentation of 2, 3-butanediol by Paenibacillus polymyxa DSM 365 [J]. Bioresource Technology, 2012, 124: 237-244. |
[16] | ZHANG L, SUN J, HAO Y, et al. Microbial production of 2, 3-butanediol by a surfactant (serrawettin)-deficient mutant of Serratia marcescens H30 [J]. J. Ind. Microbiol. Biotechnol., 2010, 37(8): 857-62. |
[17] | YANG T H, RATHNASINGH C, LEE H J, et al. Identification of acetoin reductases involved in 2, 3-butanediol pathway in Klebsiella oxytoca [J]. Journal of Biotechnology, 2014, 172: 59-66. |
[18] | LEE S, KIM B, JEONG D, et al. Observation of 2, 3-butanediol biosynthesis in Lys regulator mutated Klebsiella pneumoniae at gene transcription level [J]. Journal of Biotechnology, 2013, 168(4): 520-526. |
[19] | OLIVEIRA R R D, NICHOLSON W L. The LysR-type transcriptional regulator (LTTR) AlsR indirectly regulates expression of the Bacillus subtilis bdhA gene encoding 2, 3-butanediol dehydrogenase [J]. Appl. Microbiol. Biotechnol., 2013, 97(16): 7307-7316. |
[20] | FRAEDRICH C, MARCH A, FIEGE K, et al. The transcription factor AlsR binds and regulates the promoter of the alsSD operon responsible for acetoin formation in Bacillus subtilis [J]. Journal of Bacteriology, 2012, 194(5): 1100-1112. |
[21] | LIAN J, CHAO R, ZHAO H. Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R, 3R)-butanediol [J]. Metab. Eng., 2014, 23: 92-99. |
[22] | KIM S J, SEO S O, JIN Y S, et al. Production of 2, 3-butanediol by engineered Saccharomyces cerevisiae [J]. Bioresource Technology, 2013, 146: 274-281. |
[23] | GUO X W, ZHANG Y H, CAO C H, et al. Enhanced production of 2, 3-butanediol by overexpressing acetolactate synthase and acetoin reductase in Klebsiella pneumoniae [J]. Biotechnology and Applied Biochemistry, 2014, 61(6): 707-715. |
[24] | ZHANG L. Enhanced 2, 3-butanediol production by Serratia marcescens H30 with over-expression of 2, 3-butanediol dehydrogenase [J]. Res. J. Biotechnol., 2015, 10(5): 75-80. |
[25] | BAI F, DAI L, FAN J, et al. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R, 3R)-2, 3-butanediol production [J]. J. Ind. Microbiol. Biotechnol., 2015, 42(5): 779-786. |
[26] | ZHENG Y, ZHANG H, ZHAO L, et al. One-step production of 2, 3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(10): 1409-1412. |
[27] | TSVETANOVA F, PETROVA P, PETROV K. 2, 3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A [J]. Appl. Microbiol. Biotechnol., 2014, 98(6): 2441-2451. |
[28] | JI X J, NIE Z K, HUANG H, et al. Elimination of carbon catabolite repression in Klebsiella oxytoca for efficient 2, 3-butanediol production from glucose-xylose mixtures [J]. Appl. Microbiol. Biotechnol., 2011, 89(4): 1119-1125. |
[29] | JANTAMA K, POLYIAM P, KHUNNONKWAO P, et al. Efficient reduction of the formation of by-products and improvement of production yield of 2, 3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium [J]. Metab. Eng., 2015, 30: 16-26. |
[30] | JI X J, HUANG H, ZHU J G, et al. Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene [J]. Appl. Microbiol. Biotechnol., 2010, 85(6): 1751-1758. |
[31] | QI G F, KANG Y F, LI L, et al. Deletion of meso-2, 3-butanediol dehydrogenase gene budC for enhanced D-2, 3-butanediol production in Bacillus licheniformis [J]. Biotechnol. Biofuels, 2014, 7(1): 754-760. |
[32] | RADOS D, CARVALHO A L, WIESCHALKA S, et al. Engineering Corynebacterium glutamicum for the production of 2, 3-butanediol [J]. Microb. Cell Fact., 2015, 14(1): 171. |
[33] | CHO S, KIM T, WOO H M, et al. High production of 2, 3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1 [J]. Biotechnol. Biofuels, 2015, 8(1): 1-12. |
[34] | 康燕菲, 田平芳, 谭天伟. 肺炎克雷伯氏菌毒力因子的研究进展 [J]. 微生物学报, 2015, 55(10): 1245-1252. KANG Y F, TIAN P F, TAN T W. Research advances in the virulence factors of Klebsiella pneumoniae - a review [J]. Acta Microbiologica Sinica, 2015, 55 (10): 1245-1252. |
[35] | JUNG S G, JANG J H, KIM A Y, et al. Removal of pathogenic factors from 2, 3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene [J]. Appl. Microbiol. Biotechnol., 2013, 97(5): 1997-2007. |
[36] | HUYNH D T, KIM A Y, SEOL I H, et al. Inactivation of the virulence factors from 2, 3-butanediol-producing Klebsiella pneumoniae [J]. Appl. Microbiol. Biotechnol., 2015, 99(22): 9427-9438. |
[37] | KIM B, LEE S, JEONG D, et al. Redistribution of carbon flux toward 2, 3-butanediol production in Klebsiella pneumoniae by metabolic engineering [J]. Plos One, 2014, 9(10): e105322. |
[38] | PARK J M, SONG H, LEE H J, et al. In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2, 3-butanediol production [J]. J. Ind. Microbiol. Biotechnol., 2013, 40(9): 1057-1066. |
[39] | DUETZ W A, VAN BEILEN J B, WITHOLT B. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis [J]. Current Opinion in Biotechnology, 2001, 12(4): 419-425. |
[40] | DREPPER T, EGGERT T, HUMMEL W, et al. Novel biocatalysts for white biotechnology [J]. Biotechnology Journal, 2006, 1(7/8): 777-786. |
[41] | YANG T, RAO Z, HU G, et al. Metabolic engineering of Bacillus subtilis for redistributing the carbon flux to 2, 3-butanediol by manipulating NADH levels [J]. Biotechnol. Biofuels, 2015, 8(1): 1-9. |
[42] | ZHANG L, XU Y Y, GAO J, et al. Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacillus polymyxa [J]. Bioresource Technology, 2016, 201: 319-328. |
[43] | GECKIL H, GENCER S, KAHRAMAN H, et al. Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stress [J]. Research in Microbiology, 2003, 154(6): 425-431. |
[44] | GECKIL H, BARAK Z, CHIPMAN D M, et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene [J]. Bioprocess and Biosystems Engineering, 2004, 26(5): 325-330. |
[45] | JEONG J W, PARK K M, CHUNG M, et al. Influence of Vitreoscilla hemoglobin gene expression on 2, 3-butanediol production in Klebsiella oxytoca [J]. Biotechnology and Bioprocess Engineering, 2015, 20(1): 10-17. |
[46] | ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production [J]. Science, 2006, 314(5805): 1565-1568. |
[47] | MOONS P, VAN HOUDT R, VIVIJS B, et al. Integrated regulation of acetoin fermentation by quorum sensing and pH in Serratia plymuthica RVH1 [J]. Applied and Environmental Microbiology, 2011, 77(10): 3422-3427. |
[48] | ZHANG X, ZHANG R Z, BAO T, et al. Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis [J]. J. Ind. Microbiol. Biotechnol., 2013, 40(9): 1067-1076. |
[49] | YANG T W, RAO Z M, ZHANG X, et al. Enhanced 2, 3-butanediol production from biodiesel-derived glycerol by engineering of cofactor regeneration and manipulating carbon flux in Bacillus amyloliquefaciens [J]. Microbial Cell Factories, 2015, 14(1): 1-11. |
[50] | KEASLING J D. Manufacturing molecules through metabolic engineering [J]. Science, 2010, 330(6009): 1355-1358. |
[51] | LI Z J, JIAN J, WEI X X, et al. Microbial production of meso- 2, 3-butanediol by metabolically engineered Escherichia coli under low oxygen condition [J]. Appl. Microbiol. Biotechnol., 2010, 87(6): 2001-2009. |
[52] | UI S, OKAJIMA Y, MIMURA A, et al. Molecular generation of an Escherichia coli strain producing only the meso-isomer of 2, 3-butanediol [J]. Journal of Fermentation and Bioengineering, 1997, 84(3): 185-189. |
[53] | YAN Y, LEE C C, LIAO J C. Enantioselective synthesis of pure (R, R)-2, 3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases [J]. Organic & Biomolecular Chemistry, 2009, 7(19): 3914-3917. |
[54] | SHEN X, LIN Y, JAIN R, et al. Inhibition of acetate accumulation leads to enhanced production of (R, R)-2, 3-butanediol from glycerol in Escherichia coli [J]. J. Ind. Microbiol. Biotechnol., 2012, 39(11): 1725-1729. |
[55] | JI X J, LIU L G, SHEN M Q, et al. Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2, 3-butanediol [J]. Biotechnology and Bioengineering, 2015, 112(5): 1056-1059. |
[56] | CHU H, XIN B, LIU P, et al. Metabolic engineering of Escherichia coli for production of (2S, 3S)-butane-2, 3-diol from glucose [J]. Biotechnol. Biofuels, 2015, 8(1): 1-11. |
[57] | MAZUMDAR S, LEE J, OH M K. Microbial production of 2, 3-butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli [J]. Bioresour. Technol., 2013, 136: 329-336. |
[58] | NIELSEN D R, YOON S H, YUAN C J, et al. Metabolic engineering of acetoin and meso-2, 3-butanediol biosynthesis in E. coli [J]. Biotechnology Journal, 2010, 5(3): 274-284. |
[59] | XU Y, CHU H, GAO C, et al. Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2, 3-butanediol [J]. Metabolic Engineering, 2014, 23: 22-33. |
[60] | LEE S, KIM B, PARK K, et al. Synthesis of pure meso- 2, 3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli [J]. Applied Biochemistry and Biotechnology, 2012, 166(7): 1801-1813. |
[61] | SHIN H D, YOON S H, WU J, et al. High-yield production of meso-2, 3-butanediol from cellodextrin by engineered E. coli biocatalysts [J]. Bioresource Technology, 2012, 118: 367-373. |
[62] | KAY J E, JEWETT M C. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2, 3-butanediol [J]. Metabolic Engineering, 2015, 32: 133-142. |
[63] | DUDLEY Q M, KARIM A S, JEWETT M C. Cell-free metabolic engineering: biomanufacturing beyond the cell [J]. Biotechnology Journal, 2015, 10(1): 69-82. |
[64] | KIM J W, SEO S O, ZHANG G C, et al. Expression of Lactococcus lactis NADH oxidase increases 2, 3-butanediol production in Pdc-deficient Saccharomyces cerevisiae [J]. Bioresource Technology, 2015, 191: 512-519. |
[65] | ROMANO P, SUZZI G. Origin and production of acetoin during wine yeast fermentation [J]. Applied and Environmental Microbiology, 1996, 62(2): 309-315. |
[66] | CHEN G C, JORDAN F. Brewers-yeast pyruvate decarboxylase produces acetoin from acetaldehyde-a novel tool to study the mechanism of steps subsequent to carbon-dioxide loss [J]. Biochemistry, 1984, 23(16): 3576-3582. |
[67] | EHSANI M, FERNANDEZ M R, BIOSCA J A, et al. Reversal of coenzyme specificity of 2, 3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis [J]. Biotechnology and Bioengineering, 2009, 104(2): 381-389. |
[68] | EHSANI M, FERNANDEZ M R, BIOSCA J A, et al. Engineering of 2, 3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae [J]. Appl. Environ. Microbiol., 2009, 75(10): 3196-3205. |
[69] | NG C Y, JUNG M Y, LEE J, et al. Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering [J]. Microb. Cell Fact., 2012, 11(20): 115-120. |
[70] | NAN H, SEO S O, OH E J, et al. 2, 3-Butanediol production from cellobiose by engineered Saccharomyces cerevisiae [J]. Appl. Microbiol. Biotechnol., 2014, 98(12): 5757-5764. |
[71] | KIM S J, SEO S O, PARK Y C, et al. Production of 2, 3-butanediol from xylose by engineered Saccharomyces cerevisiae [J]. J. Biotechnol., 2014, 192: 376-382. |
[72] | FLIKWEERT M T, DE SWAAF M, VAN DIJKEN J P, et al. Growth requirements of pyruvate-decarboxylase-negative Saccharomyces cerevisiae [J]. FEMS Microbiology Letters, 1999, 174(1): 73-79. |
[73] | KIM S, HAHN J S. Efficient production of 2, 3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing [J]. Metab. Eng., 2015, 31: 94-101. |
[74] | CAMBON B, MONTEIL V, REMIZE F, et al. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes [J]. Applied and Environmental Microbiology, 2006, 72(7): 4688-4694. |
[75] | OUD B, FLORES C L, GANCEDO C, et al. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(5): 54-55. |
[76] | VAN MARIS A J A, GEERTMAN J M A, VERMEULEN A, et al. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C-2-independent, glucose- tolerant, and pyruvate-hyperproducing yeast [J]. Applied and Environmental Microbiology, 2004, 70(1): 159-166. |
[77] | SHI S, LIANG Y, ZHANG M M, et al. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 33: 19-27. |
[78] | MACHADO I M P, ATSUMI S. Cyanobacterial biofuel production [J]. Journal of Biotechnology, 2012, 162(1): 50-56. |
[79] | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde [J]. Nature Biotechnology, 2009, 27(12): 1177-U142. |
[80] | LAN E I, LIAO J C. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018-6023. |
[81] | TAKAHAMA K, MATSUOKA M, NAGAHAMA K, et al. Construction and analysis of a recombinant cyanobacterium expressing a chromosomally inserted gene for an ethylene-forming enzyme at the psbAI locus [J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 302-305. |
[82] | ZHOU J, ZHANG H, ZHANG Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide [J]. Metabolic Engineering, 2012, 14(4): 394-400. |
[83] | LIU X, SHENG J, CURTISS R Ⅲ. Fatty acid production in genetically modified cyanobacteria [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17): 6899-6904. |
[84] | TAN X, YAO L, GAO Q, et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria [J]. Metabolic Engineering, 2011, 13(2): 169-176. |
[85] | OLIVER J W, MACHADO I M, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol [J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(4): 1249-1254. |
[86] | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Combinatorial optimization of cyanobacterial 2, 3-butanediol production [J]. Metabolic Engineering, 2014, 22: 76-82. |
[87] | SAVAKIS P E, ANGERMAYR S A, HELLINGWERF K J. Synthesis of 2, 3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria [J]. Metab. Eng., 2013, 20: 121-130.4. |
[84] | TAN X, YAO L, GAO Q, et al. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria [J]. Metabolic Engineering, 2011, 13(2): 169-176. |
[85] | OLIVER J W, MACHADO I M, YONEDA H, et al. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol [J]. Proc. Natl. Acad. Sci. U. S. A., 2013, 110(4): 1249-1254. |
[86] | OLIVER J W K, MACHADO I M P, YONEDA H, et al. Combinatorial optimization of cyanobacterial 2,3-butanediol production [J]. Metabolic Engineering, 2014, 22: 76-82. |
[87] | SAVAKIS P E, ANGERMAYR S A, HELLINGWERF K J. Synthesis of 2,3-butanediol by Synechocystis sp. PCC6803 via heterologous expression of a catabolic pathway from lactic acid- and enterobacteria [J]. Metab. Eng., 2013, 20: 121-130. |
[1] | 赵春雷, 郭亮, 高聪, 宋伟, 吴静, 刘佳, 刘立明, 陈修来. 代谢工程改造大肠杆菌生产软骨素[J]. 化工学报, 2023, 74(5): 2111-2122. |
[2] | 毕浩然, 张洋, 王凯, 徐晨晨, 霍奕影, 陈必强, 谭天伟. 微生物制造绿色化学品研究进展[J]. 化工学报, 2023, 74(1): 1-13. |
[3] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[4] | 刘雪, 张莉娟, 赵广荣. 大肠杆菌偏利共培养系统合成大豆苷元[J]. 化工学报, 2022, 73(9): 4015-4024. |
[5] | 孙怡, 张腾, 吕波, 李春. 胞内生物传感器提高微生物细胞工厂的精细调控[J]. 化工学报, 2022, 73(2): 521-534. |
[6] | 王靖楠, 庞建, 秦磊, 郭超, 吕波, 李春, 王超. 丁烯基多杀菌素高产菌株的选育和改造策略[J]. 化工学报, 2022, 73(2): 566-576. |
[7] | 刘海波, 王楠, 刘洪周, 陈铁柱, 李建昌. 电压扰动对EAD代谢通量中微生物与关键酶活性的影响[J]. 化工学报, 2022, 73(10): 4603-4612. |
[8] | 王欣慧, 王颖, 姚明东, 肖文海. 维生素A生物合成的研究进展[J]. 化工学报, 2022, 73(10): 4311-4323. |
[9] | 周武林, 高惠芳, 吴玉玲, 张显, 徐美娟, 杨套伟, 邵明龙, 饶志明. 重组酿酒酵母生物合成菜油甾醇[J]. 化工学报, 2021, 72(8): 4314-4324. |
[10] | 杨瑞雄, 郑鑫, 陆涛, 赵誉泽, 杨庆华, 卢英华, 何宁, 凌雪萍. 烯酰还原酶基因的替换对裂殖壶菌合成二十碳五烯酸的影响[J]. 化工学报, 2021, 72(7): 3768-3779. |
[11] | 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214. |
[12] | 王欣, 赵鹏, 李清扬, 田平芳. 半导体合成生物学的研究进展[J]. 化工学报, 2021, 72(5): 2426-2435. |
[13] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[14] | 孙晶晶, 贾丽娜, 林波, 王艳, 龚俊波. 药物-药物共晶的研究进展[J]. 化工学报, 2021, 72(2): 828-840. |
[15] | 苏楠, 吴亦楠, 陈韵亿, 金丽华, 张翀, Aikawa Shimpei, Hasunuma Tomohisa, Kondo Akihiko, 邢新会. ARTP诱变钝顶螺旋藻突变体比较组学研究[J]. 化工学报, 2021, 72(12): 6298-6310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||