化工学报 ›› 2017, Vol. 68 ›› Issue (2): 509-518.DOI: 10.11949/j.issn.0438-1157.20160928
黄耀辉1, 尹秋响1,2, 张霞1, 郭明霞1, 王昌1
收稿日期:
2016-06-30
修回日期:
2016-10-20
出版日期:
2017-02-05
发布日期:
2017-02-05
通讯作者:
尹秋响
基金资助:
天津市应用基础及前沿技术研究计划项目(天津市自然科学基金重点项目)(11JCZDJC20700)。
HUANG Yaohui1, YIN Qiuxiang1,2, ZHANG Xia1, GUO Mingxia1, WANG Chang1
Received:
2016-06-30
Revised:
2016-10-20
Online:
2017-02-05
Published:
2017-02-05
Supported by:
supported by the Tianjin Research Program of Application Foundation and Advanced Technology (the Key Program of Natural Science Foundation of Tianjin) (11JCZDJC20700).
摘要:
药物的理化性质与其结晶形式相关,药物共晶作为一种新型的固态形式能够在不影响药物内部结构的同时改善药物的多方面性质,提高药效。通过药物共晶的定义、应用、制备方法和结构研究等方面对目前药物共晶的研究现状进行总结,为后续共晶方向的研究提供理论指导。
中图分类号:
黄耀辉, 尹秋响, 张霞, 郭明霞, 王昌. 药物共晶的合成和结构分析[J]. 化工学报, 2017, 68(2): 509-518.
HUANG Yaohui, YIN Qiuxiang, ZHANG Xia, GUO Mingxia, WANG Chang. Synthesis and structural analysis of pharmaceutical co-crystals[J]. CIESC Journal, 2017, 68(2): 509-518.
[1] | BYRN S R, ZOGRAFI G, CHEN X M. Accelerating proof of concept for small molecule drugs using solid-state chemistry[J]. Journal of Pharmaceutical Sciences, 2010, 99(9):3665-3675. |
[2] | SCHULTHEISS N, NEWMAN A. Pharmaceutical cocrystals and their physicochemical properties[J]. Crystal Growth & Design, 2009, 9(6):2950-2967. |
[3] | MORISSETTE S L, ALMARSSON O, PETERSON M L, et al. High-throughput crystallization:polymorphs, salts, co-crystals and solvates of pharmaceutical solids[J]. Advanced Drug Delivery Reviews, 2004, 56(3):275-300. |
[4] | 马坤. 药物共晶的筛选技术及热力学研究进展[J]. 药学进展, 2010, 34(12):529-534. MA K. Progress in the research of screening technique and thermodynamics of pharmaceutical cocrystals[J]. Progress in Pharmaceutical Sciences, 2010, 34(12):529-534. |
[5] | 王义成, 冯成亮, 杨素勤, 等. 药物共晶的最新研究进展[J]. 药学进展, 2013, 37(3):120-130. WANG Y C, FENG C L, YANG S Q, et al. Recent research advances of pharmaceutical cocrystals[J]. Progress in Pharmaceutical Sciences, 2013, 37(3):120-130. |
[6] | 陈学文, 宋菊, 唐海谊, 等. 药物共晶筛选与理化性质研究进展[J]. 中国医药工业杂志, 2012, 43(8):703-708. CHEN X W, SONG J, TANG H Y, et al. Progress in screening methods and physicochemical properties of pharmaceutical co-crystals[J]. Chinese Journal of Pharmaceuticals, 2012, 43(8):703-708. |
[7] | 高缘, 祖卉, 张建军. 药物共晶研究进展[J]. 化学进展, 2010, 22(5):829-836. GAO Y, ZU H, ZHANG J J. Pharmaceutical cocrystals[J]. Progress in Chemistry, 2010, 22(5):829-836. |
[8] | CHIENG N, RADES T, AALTONEN J. An overview of recent studies on the analysis of pharmaceutical polymorphs[J]. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55(4):618-644. |
[9] | BRAGA D, MAINI L, GREPIONI F. Mechanochemical preparation of co-crystals[J]. Chemical Society Reviews, 2013, 42(18):7638-7648. |
[10] | FRISCIC T, JONES W. Recent advances in understanding the mechanism of cocrystal formation via grinding[J]. Crystal Growth & Design, 2009, 9(3):1621-1637. |
[11] | THAKURIA R, DELORI A, JONES W, et al. Pharmaceutical cocrystals and poorly soluble drugs[J]. International Journal of Pharmaceutics, 2013, 453(1):101-125. |
[12] | AITIPAMULA S, CHOW P S, TAN R B H. Polymorphism in cocrystals:a review and assessment of its significance[J]. Cryst. Eng. Comm., 2014, 16(17):3451-3465. |
[13] | BRITTAIN H G. Cocrystal systems of pharmaceutical interest:2010[J]. Crystal Growth & Design, 2012, 12(2):1046-1054. |
[14] | BRITTAIN H G. Cocrystal systems of pharmaceutical interest:2011[J]. Crystal Growth & Design, 2012, 12(11):5823-5832. |
[15] | LING A R, BAKER J L. Halogen derivatives of quinine(Ⅲ):Derivatives of quinhydrone[J]. J. Chem. Soc. Trans., 1893, 63:1314-1327. |
[16] | AAKEROY C B, SALMON D J. Building co-crystals with molecular sense and supermolecular sensibility[J]. Cryst. Eng. Comm., 2005, 7:439-448. |
[17] | RODRIGUEZ H N. Cocrystals:molecular design of pharmaceutical materials[J]. Molecular Pharmaceutics, 2007, 4(3):299-300. |
[18] | ZHANG X, SUN F, ZHANG T, et al. Three pharmaceuticals cocrystals of adefovir:syntheses, structures and dissolution study[J]. Journal of Molecular Structure, 2015, 1100:395-400. |
[19] | ZHANG X, TIAN Y, JIA J, et al. Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone[J]. Journal of Molecular Structure, 2016, 1108:560-566. |
[20] | SOWA M, SLEPOKURA K, MATCZAL-JON E. Solid-state characterization and solubility of a genistein-caffeine cocrystal[J]. Journal of Molecular Structure, 2014, 1076:80-88. |
[21] | XU L L, CHEN J M, YAN Y, et al. Improving the solubility of 6-mercaptopurine via cocrystals and salts[J]. Crystal Growth & Design, 2012, 12(12):6004-6011. |
[22] | MCNAMARA D P, CHILDS S L, GIORDANO J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API[J]. Pharmaceutical Research, 2006, 23(8):1888-1897. |
[23] | CHEN Y, LI L, YAO J, et al. Improving the solubility and bioavailability of apixaban via apixaban-oxalic acid cocrystal[J]. Crystal Growth & Design, 2016, 16(5):2923-2930. |
[24] | SHAYANFAR A, ZEYNALI K A, JOUYBAN A. Solubility and dissolution rate of a carbamazepine-cinnamic acid cocrystal[J]. Journal of Molecular Liquids, 2013, 187:171-176. |
[25] | DUGGIRALA N K, SMITH A J, WOJTAS L. Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose[J]. Crystal Growth & Design, 2014, 14(11):6135-6142. |
[26] | WANG L, WEN X N, LI P, et al. 2:15-Fluorocytosine-acesulfame CAB cocrystal and 1:15-fluorocytosine-acesulfame salt hydrate with enhanced stability against hydration[J]. Cryst. Eng. Comm., 2014, 16(36):8537-8545. |
[27] | IMCHALEE R, CHAROENCHAITRAKOOL M. Gas anti-solvent processing of a new sulfamethoxazole-L-malic acid cocrystal[J]. Journal of Industrial and Engineering Chemistry, 2015, 25:12-15. |
[28] | ZHOU Z, LI W, SUN W, et al. Resveratrol cocrystals with enhanced solubility and tabletability[J]. International Journal of Pharmaceutics, 2016, 509(1/2):391-399. |
[29] | FRAMPTON C. Cocrystal clear solutions[J]. Chemistry & Industry, 2010, (5):21-23 |
[30] | AAKEROY C B, SALMON D J, SMITH M M, et al. Cyanophenyloximes:reliable and versatile tools for hydrogen-bond directed supramolecular synthesis of cocrystals[J]. Crystal Growth & Design, 2006, 6(4):1033-1042. |
[31] | LIAO X, GAUTAM M, GRILL A, et al. Effect of position isomerism on the formation and physicochemical properties of pharmaceutical co-crystals[J]. Journal of Pharmaceutical Sciences, 2010, 99(1):246-254. |
[32] | THANIGAIMANI K, KHALIB N C, TEMEL E, et al. New supramolecular cocrystal of 2-amino-5-chloropyridine with 3-methylbenzoic acids:syntheses, structural characterization, hirshfeld surfaces and quantum chemical investigations[J]. Journal of Molecular Structure, 2015, 1099:246-256. |
[33] | HICKEY M B, PETERSON M L, SCOPPETTUOLO L A, et al. Performance comparison of a co-crystal of carbamazepine with marketed product[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 67(1):112-119. |
[34] | REMENAR J F, PERTERSON M L, STEPHENS P W, et al. Celecoxib:nicotinamide dissociation:using excipients to capture the cocrystal's potential[J]. Molecular Pharmaceutics, 2007, 4(3):386-400. |
[35] | ZHANG S, RASMUSON. The theophylline-oxalic acid co-crystal system:solid phases, thermodynamics and crystallization[J]. Cryst. Eng. Comm., 2012, 14(14):4644-4655. |
[36] | CHUN N H, WANG I C, LEE M J, et al. Characteristics of indomethacin-saccharin (IMC-SAC) co-crystals prepared by an anti-solvent crystallization process[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85(3):854-861. |
[37] | HORNEDO N R, NEHM S J, SEEFELDT K F, et al. Reaction crystallization of pharmaceutical molecular complexes[J]. Molecular Pharmaceutics, 2006, 3(3):362-367. |
[38] | KARKI S, FRISCIC T, JONES W. Control and interconversion of cocrystal stoichiometry in grinding:stepwise mechanism for the formation of a hydrogen-bonded cocrystal[J]. Cryst. Eng. Comm., 2009, 11(3):470-481. |
[39] | KULLA H, GREISER S, BENEMANN S, et al. In situ investigation of a self-accelerated cocrystal formation by grinding pyrazinamide with oxalic acid[J]. Molecules, 2016, 21(7):917-925. |
[40] | YAMAMOTO K, TSUTSUMI S, LKEDA Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals[J]. International Journal of Pharmaceutics, 2012, 437(1/2):162-171. |
[41] | LIN H L, WU T K, LIN S Y. Screening and characterization of cocrystal formation of metaxalone with short-chain dicarboxylic acids induced by solvent-assisted grinding approach[J]. Thermochimica Acta, 2014, 575:313-321. |
[42] | NGUYEN K L, FRISCIC T, DAY G M, et al. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation[J]. Nature Materials, 2007, 6:206-209. |
[43] | FRISCIC T, FABIAN L, BURLEY J C, et al. Exploring the relationship between cocrystal stability and symmetry:is Wallach's rule applicable to multi-component solids?[J]. Chem. Comm., 2008, (14):1644-1646. |
[44] | TRASK A V, MOTHERWELL W D, JONES W. Solvent-drop grinding:green polymorph control of cocrystallisation[J]. Chem. Comm., 2004, (7):890-891. |
[45] | LI S, CHEN J M, LU T B, et al. Synthon polymorphs of 1:1 co-crystal of 5-fluorouracil and 4-hydroxybenzoic acid:their relative stability and solvent polarity dependence of grinding outcomes[J]. Cryst. Eng. Comm., 2014, 16(28):6450-6458. |
[46] | FULIAS A, SOICA C, LEDETI I, et al. Characterization of pharmaceutical acetylsalicylic acid-theophylline cocrystal obtained by slurry method under microwave irradiation[J]. Revista De Chimie, 2014, 65(11):1281-1284. |
[47] | HASA D, RAUBER G S, VOINOVICH D, et al. Cocrystal formation through mechanochemistry:from neat and liquid-assisted grinding to polymer-assisted grinding[J]. Angewandte Chemie, 2015, 54(25):7371-7375. |
[48] | STAHLY G P. Diversity in single-and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals[J]. Crystal Growth & Design, 2007, 7(6):1007-1026. |
[49] | PADRELA L, RODRIGUES M A, TIAGO J, et al. Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents[J]. Crystal Growth & Design, 2015, 15(7):3175-3181. |
[50] | NEUROHR C, ERRIGUIBLE A, LAUGIER S, et al. Challenge of the supercritical antisolvent technique SAS to prepare cocrystal-pure powders of naproxen-nicotinamide[J]. Chemical Engineering Journal, 2016, 303:238-251. |
[51] | BERRY D J, SEATON C C, CLEGG W, et al. Applying hot-stage microscopy to co-crystal screening:a study of nicotinamide with seven active pharmaceutical ingredients[J]. Crystal Growth & Design, 2008, 8(5):1697-1712. |
[52] | PATIL S, KULKARNI J, MAHADIK K. Exploring the potential of electrospray technology in cocrystal synthesis[J]. Industrial & Engineering Chemistry Research, 2016, 55(30):8409-8414. |
[53] | CHILDS S L, STAHLY G P, PARK A. The salt-cocrystal continuum: the influence of crystal structure on ionization state[J]. Molecular Pharmaceutics, 2007, 4(3):323-338. |
[54] | TAYLOR R, KENNARD O. Comparison of X-ray and neutron diffraction results for the NH…O=C hydrogen bond[J]. Acta Crystallographica Section B, 1983, 39:133-138. |
[55] | LEE K S, KIM K J, ULRICH J. In situ monitoring of cocrystallization of salicylic acid-4,4'-dipyridyl in solution using Raman spectroscopy[J]. Crystal Growth & Design, 2014, 14(6):2893-2899. |
[56] | LEE N J, CHUN N H, KIM M J, et al. In situ monitoring of antisolvent cocrystallization by combining near-infrared and Raman spectroscopies[J]. Crystal Growth & Design, 2015, 15(9):4385-4393. |
[57] | SOARES F L, CARNEIRO R L. Green synthesis of ibuprofen-nicotinamide cocrystals and in-line evaluation by Raman spectroscopy[J]. Crystal Growth & Design, 2013, 13(4):1510-1517. |
[58] | ZHANG G C, LIN H L, LIN S Y. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin-saccharin cocrystals via solid-state grinding process[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 66:162-169. |
[59] | LIN H L, ZHANG G C, LIN S Y. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC-FTIR microspectroscopy[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(1):679-687. |
[60] | SARRAGUÇA M C, PAISANA M, PINTO J, et al. Real-time monitoring of cocrystallization processes by solvent evaporation:a near infrared study[J]. European Journal of Pharmaceutical Sciences, 2016, 90:76-84. |
[61] | HEIDEN S, TROBS L, WENZEL K J, et al. Mechanochemical synthesis and structural characterisation of a theophylline-benzoic acid cocrystal (1:1)[J]. Cryst. Eng. Comm., 2012, 14(16):5128-5129. |
[62] | JANIAK C. A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands[J]. Journal of the Chemical Society-Dalton Transactions, 2000, (21):3885-3896. |
[63] | MANIN A N, SUROV A O, CHURAKOV A V, et al. Crystal structures, thermal analysis, and dissolution behavior of new solid forms of the antiviral drug arbidol with dicarboxylic acids[J]. Crystals, 2015, 5(4):650-669. |
[64] | KRISHNA G R, SHI L, BAG P P, et al. Correlation among crystal structure, mechanical behavior, and tabletability in the co-crystals of vanillin isomers[J]. Crystal Growth & Design, 2015, 15(4):1827-1832 |
[65] | BASAVOJU S, BOSTROM D, VELAGA S P. Indomethacinsaccharin cocrystal:design, synthesis and preliminary pharmaceutical characterization[J]. Pharmaceutical Research, 2008, 25(3):530-541. |
[66] | SANPHUI P, MISHRA M K, RAMAMURTY U, et al. Tuning mechanical properties of pharmaceutical crystals with multicomponent crystals:voriconazole as a case study[J]. Molecular Pharmaceutics, 2015, 12(3):889-897. |
[67] | HIENDRAWAN S, VERIANSYAH B, WIDJOJOKUSUMO E, et al. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid[J]. International Journal of Pharmaceutics, 2016, 497(1/2):106-113. |
[68] | STAVROPOULOS K, JOHNSTON S C, ZHANG Y, et al. Cocrystalline solids of telaprevir with enhanced oral absorption[J]. Journal of Pharmaceutical Sciences, 2016, 104(10):3343-3350. |
[69] | SHETE A, MURTHY S, KORPALE S, et al. Cocrystals of itraconazole with amino acids:screening, synthesis, solid state characterization, in vitro drug release and antifungal activity[J]. Journal of Drug Delivery Science and Technology, 2015, 28:46-55. |
[70] | YAN Y, CHEN J M, LU T B. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method[J]. Cryst. Eng. Comm., 2015, 17(3):612-620. |
[71] | DING P, LIN L, LI Y, et al. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening[J]. International Journal of Pharmaceutics, 2015, 496(1):107-116. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李彬, 徐正虎, 姜爽, 张天永. 双氧水催化氧化法清洁高效合成促进剂CBS[J]. 化工学报, 2023, 74(7): 2919-2925. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[8] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[9] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[10] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[11] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[12] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[13] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[14] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[15] | 胡月, 马守骏, 蹇锡高, 翁志焕. 新型聚芳醚腈固化邻苯二甲腈树脂的研究[J]. 化工学报, 2023, 74(2): 871-882. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||