化工学报 ›› 2017, Vol. 68 ›› Issue (11): 4414-4422.DOI: 10.11949/j.issn.0438-1157.20170308
滕雪刚, 杨仁春, 任超, 刘璐璐, 汪明星
收稿日期:
2017-03-28
修回日期:
2017-07-19
出版日期:
2017-11-05
发布日期:
2017-11-05
通讯作者:
杨仁春
基金资助:
国家自然科学基金项目(51572004);安徽省高校自然科学基金重大项目(KJ2016SD06);安徽工程大学校级杰出青年科学基金项目(2016JQ01);安徽工程大学2016年中青年拔尖人才培养计划项目(2016BJRC002)。
TENG Xuegang, YANG Renchun, REN Chao, LIU Lulu, WANG Mingxing
Received:
2017-03-28
Revised:
2017-07-19
Online:
2017-11-05
Published:
2017-11-05
Supported by:
supported by the National Natural Science Foundation of China (51572004), the Natural Science Foundation of the Higher Education Institutions of Anhui Province (KJ2016SD06), the Natural Science Fund for Distinguished Young Scholars from Anhui Polytechnic University (2016JQ01) and the Top-notch Talent Cultivation Plan from Anhui Polytechnic University (2016BJRC002).
摘要:
通过溶胶-凝胶制备过程中水含量控制,分别获得了硫酸根修饰的TiO2(25)和无修饰的TiO2(150)两种二氧化钛载体。在两种载体上,通过浸渍法引入不同浓度的碳点胶体,获得了系列不同C含量的Cx/TiO2(25)和Cx/TiO2(150)催化剂。利用TEM、XRD、FT-IR、UV-Vis、BET、XPS等表征分析了催化剂的表面形貌、晶格间距、晶型结构、光吸收、孔结构及元素组成。结果显示:相对于无硫酸根修饰的TiO2(150)催化剂,硫酸根修饰的TiO2(25)催化剂的光吸收发生显著红移,展示了更宽的可见光响应;对于TiO2(25)样品,C的引入可提高其Oads/Olatt比值。催化性能研究显示,C的引入可以提高其光催化活性。
中图分类号:
滕雪刚, 杨仁春, 任超, 刘璐璐, 汪明星. C/TiO2-SO42-的制备及其光解水性能[J]. 化工学报, 2017, 68(11): 4414-4422.
TENG Xuegang, YANG Renchun, REN Chao, LIU Lulu, WANG Mingxing. Preparation of C/TiO2-SO42- and their water splitting performance[J]. CIESC Journal, 2017, 68(11): 4414-4422.
[1] | 申玉芳, 龙飞, 邹正光. 半导体光催化技术研究进展[J]. 材料导报, 2006, 20(6):28-31. SHEN Y F, LONG F, ZOU Z G. Developments of photocatalytic semiconductors[J]. Mater. Rev., 2006, 20(6):28-31. |
[2] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 37:38-245. |
[3] | DEMIRCI S, DIKICI T, YURDDASKAL M, et al. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances[J]. Appl. Surf. Sci., 2016, 390:591-601. |
[4] | BANERJEE A N, HAMNABARD N, SANG W J. A comparative study of the effect of Pd-doping on the structural, optical, and photocatalytic properties of sol-gel derived anatase TiO2 nanoparticles[J]. Ceram. Int., 2016, 42:12010-12026. |
[5] | LI D, CHEN F, JIANG D L, et al. Enhanced photocatalytic activity of N-doped TiO2 nanocrystals with exposed {001} facets[J]. Appl. Surf. Sci., 2016, 390:689-695. |
[6] | LIN Y H, CHANG C W, CHU H, et al. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2:characterization, kinetics, and reaction pathways[J]. Appl. Catal. B:Environ., 2016, 199:1-10. |
[7] | WANG Y Z, WU Y S, YANG H, et al. Doping TiO2 with boron or/and cerium elements:effects on photocatalytic antimicrobial activity[J]. Vacuum, 2016, 131:58-64. |
[8] | CHENG Z W, GU Z Q, CHEN J M. Synthesis, characterization, and photocatalytic activity of porous La-N-co-doped TiO2 nanotubes for gaseous chlorobenzene oxidation[J]. J. Environ. Sci.-China, 2016, 46:203-213. |
[9] | DU C, ZHOU J S, LI F Z, et al. Extremely fast dark adsorption rate of carbon and nitrogen co-doped TiO2 prepared by a relatively fast, facile and low-cost microwave method[J]. Appl. Phys. A, 2016, 122:714. |
[10] | MOYA A, CHEREVAN A, MARCHESAN S, et al. Oxygen vacancies and interfaces enhancing photocatalytic hydrogen production in mesoporous CNT/TiO2, hybrids[J]. Appl. Catal. B:Environ., 2015, 179:574-582. |
[11] | TIAN J, LENG Y H, ZHAO Z H, et al. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation[J]. Nano Energy, 2015, 11:419-427. |
[12] | YU X J, LIU J J, YU Y C, et al. Preparation and visible light photocatalytic activity of carbon quantum dots/TiO2 nanosheet composites[J]. Carbon, 2014, 68:718-724. |
[13] | FUJITA SI, KAWAMORI H, HONDA D, et al. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO2 catalysts:effects of preparation and reaction conditions[J]. Appl. Catal. B:Environ., 2016, 181:818-824. |
[14] | NIU W, WANG G, LIU X D, et al. Preparation of WO3-TiO2 photo-anode and its performance of photocatalytic hydrogen production by water splitting[J]. Int. J. Electrochem. Sc., 2015, 10:8513-8521. |
[15] | TANIGAWA S, IRIE H. Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide[J]. Appl. Catal. B:Environ., 2016, 180:1-5. |
[16] | LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J]. Chem. Soc. Rev., 2015, 44:362. |
[17] | PIZEM H, SUKENIKC N, SAMPATHKUMARAN U, et al. Effects of substrate surface functionality on solution-deposited titania films[J]. Chem. Mater., 2002, 14:2476-2485. |
[18] | 沈俊, 罗妮, 张明俊, 等. 介孔TiO2-SO42-的合成及表征[J]. 催化学报, 2007, 28(3):264-268. SHEN J, LUO N, ZHANG M J, et al. Synthesis and characterization of mesoporous TiO2-SO42-[J]. Chinese J. Catal., 2007, 28(3):264-268. |
[19] | 唐守强, 何菁萍. 介孔SO42-/TiO2粉体的制备及光催化性能的研究[J]. 硅酸盐通报, 2011, 30(6):1404-1409. TANG S Q, HE J P. Study on preparation and photocatalytic capability of mesoporous SO42-/TiO2[J]. Bull. Chinese Ceram. Soc., 2011, 30(6):1404-1409. |
[20] | 苏文悦, 付贤智. 光催化剂SO42-/TiO2和TiO2的光谱行为比较[J]. 光谱学与光谱分析, 2000, 20(5):655-657. SU W Y, FU X Z. Comparison of spectral behavior of SO42-/TiO2 and TiO2 photocatalyst[J]. Spectrosc. Spect. Anal., 2000, 20(5):655-657. |
[21] | 彭少洪, 张渊明, 钟理. TiO2基固体超强酸的制备及光催化性能研究[J]. 无机化学学报, 2006, 34(12):2258-2262. PENG S H, ZHANG Y M, ZHONG L. Preparation of TiO2-based solid superacid and its photocatalytic performance[J]. J. Inorg. Mater., 2006, 34(12):2258-2262. |
[22] | YUAN H, HE J, LI R, et al. Characterization of SO42-/TiO2 and its catalytic activity in the epoxidation reaction[J]. Res. Chem. Intermed., 2017, 43:4353-4368. |
[23] | MENG C, CAO G P, LI X K, et al. Structure of the SO42-/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation[J]. Reac. Kinet. Mech. Cat., 2017, 121:719-734. |
[24] | VELMURUGAN R, KRISHNAKUMAR B, SWAMINATHAN M. Synthesis of Pd co-doped nano-TiO2-SO42-, and its synergetic effect on the solar photodegradation of Reactive Red 120 dye[J]. Mat. Sci. Semicon. Proc., 2014, 25(25):163-172. |
[25] | FERNANDO K A, SAHU S, LIU Y, et al. Carbon quantum dots and applications in photocatalytic energy conversion.[J]. ACS Appl. Mater. Inter., 2015, 7(16):8363. |
[26] | ZALFANI M, SCHUEREN B V D, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2, nanocomposites:symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants[J]. Appl. Catal. B:Environ., 2016, 199:187-198. |
[27] | WANG X W, SUN G Z, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chem. Soc. Rev., 2016, 47(22):2239. |
[28] | CHEN T, QUAN W, YU L, et al. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts[J]. J. Alloy. Compd., 2016, 686:628-634. |
[29] | GUTIÉRREZ O Y, PÉREZ F, FUENTES G A, et al. Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading[J]. Cataly. Today, 2008, 130(2/3/4):292-301. |
[30] | YANG R C, ZHANG Z H, REN Y M, et al. Green synthesis of bi-component copper oxide composites and enhanced photocatalytic performance[J]. Mater. Sci. Tech-Lond., 2015, 31(1):25-30. |
[31] | HUANG M, YU J, HU Q, et al. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light[J]. Appl. Surf. Sci., 2016, 389:1084-1093. |
[32] | LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Appl. Surf. Sci., 2016, 390:368-376. |
[33] | HU J, WANG L, ZHANG P, et al. Construction of solid-state Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production[J]. J. Power Sources, 2016, 328:28-36. |
[34] | LI G, LIAN Z, WANG W, et al. Nanotube-confinement induced size-controllable g-C3N4, quantum dots modified single-crystalline TiO2, nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19:446-454. |
[35] | JIN T, YAMAGUCHI T, TANABE K, et al. Infrared study of sulfur-containing iron oxide[J]. Inorg. Chem., 1984, 23:4396-4398. |
[36] | JIN T, YAMAGUCHI T, TANABE K, et al. Structure of acid sites on sulfur-promoted iron oxide[J]. J. Phys. Chem., 1986, 90(14):31448-3152. |
[37] | IUPAC. Manual of symbols and terminology[J]. Pure Appl. Chem., 1972, 31:578-638. |
[38] | YANG R C, LU X J, ZHANG H, et al. Glycol-assisted construction of three-dimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Appl. Surf. Sci., 2016, 36:237-243. |
[39] | LI Y, HWANG D S, LEE N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404(1/2/3):25-29. |
[40] | REN W, AI Z, JIA F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Appl. Catal. B:Environ., 2007, 69(3):138-144. |
[41] | GUAYAQUIL-SOSA J F, SERRANO-ROSALES B, et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt[J]. Appl. Catal. B:Environ., 2017, 211:337-348.):655-657. |
[21] | 彭少洪, 张渊明, 钟理. TiO2 基固体超强酸的制备及光催化性能研究[J]. 无机化学学报, 2006, 34(12):2258-2262. PENG S H, ZHANG Y M, ZHONG L. Preparation of TiO2-based solid superacid and its photocatalytic performance[J]. J. Inorg. Mater., 2006, 34(12):2258-2262. |
[22] | YUAN H, HE J, LI R, et al. Characterization of SO42-/TiO2 and its catalytic activity in the epoxidation reaction[J]. Res. Chem. Intermed., 2017, 43:4353-4368. |
[23] | MENG C, CAO G P, LI X K, et al. Structure of the SO42-/TiO2 solid acid catalyst and its catalytic activity in cellulose acetylation[J]. Reac. Kinet. Mech. Cat., 2017, 121:719-734. |
[24] | VELMURUGAN R, KRISHNAKUMAR B, SWAMINATHAN M. Synthesis of Pd co-doped nanoTiO2-SO42-, and its synergetic effect on the solar photodegradation of Reactive Red 120 dye[J]. Mat. Sci. Semicon. Proc., 2014, 25(25):163-172. |
[25] | FERNANDO K A, SAHU S, LIU Y, et al. Carbon quantum dots and applications in photocatalytic energy conversion.[J]. Acs Appl. Mater. Inter., 2015, 7(16):8363. |
[26] | ZALFANI M, SCHUEREN B V D, MAHDOUANI M, et al. ZnO quantum dots decorated 3DOM TiO2, nanocomposites:Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants[J]. Appl. Catal. B:Environ., 2016, 199:187-198. |
[27] | WANG X W, SUN G Z, LI N, et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy[J]. Chem. Soc. Rev., 2016, 47(22):2239. |
[28] | CHEN T, QUAN W, YU L, et al. One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/g-C3N4 photocatalysts[J]. J. Alloy. Compd., 2016, 686:628-634. |
[29] | Gutiérrez O Y, Pérez F, Fuentes G A, et al. Deep HDS over NiMo/Zr-SBA-15 catalysts with varying MoO3 loading[J]. Cataly. Today, 2008, 130(2-4):292-301. |
[30] | YANG R C, ZHANG Z H, REN Y M, et al. Green synthesis of bi-component copper oxide composites and enhanced photocatalytic performance[J]. Mater. Sci. Tech-Lond., 2015, 31(1):25-30. |
[31] | HUANG M, YU J, HU Q, et al. Preparation and enhanced photocatalytic activity of carbon nitride/titania(001 vs 101 facets)/reduced graphene oxide (g-C3N4/TiO2/rGO) hybrids under visible light[J]. Appl. Surf. Sci., 2016, 389:1084-1093. |
[32] | LAI C, WANG M M, ZENG G M, et al. Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation[J]. Appl. Surf. Sci., 2016, 390:368-376. |
[33] | HU J, WANG L, ZHANG P, et al. Construction of solidstate Z-scheme carbon-modified TiO2/WO3 nanofibers with enhanced photocatalytic hydrogen production[J]. J. Power Sources, 2016, 328:28-36. |
[34] | LI G, LIAN Z, WANG W, et al. Nanotube-confinement induced size-controllable g-C3N4, quantum dots modified single-crystalline TiO2, nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19:446-454. |
[35] | JIN T, YAMAGUCHI T, TANABE K,et al. Infrared study of sulfur-containing iron oxide[J]. Inorg. Chem., 1984, 23:4396-4398. |
[36] | JIN T, YAMAGUCHI T, TANABE K, et al. Structure of acid sites on sulfur-promoted iron oxide[J]. J. Phys. Chem., 1986, 90(14):31448-3152. |
[37] | IUPAC manual of symbols and terminology[J]. Pure Appl. Chem., 1972, 31:578-638. |
[38] | YANG R C, LU X J, ZHANG H, et al. Glycol-assisted construction of three-dimensionally ordered macroporous ZnO-Cu2O-TiO2 with enhanced photocatalytic properties[J]. Appl. Surf. Sci., 2016, 36:237-243. |
[39] | LI Y, HWANG D S, LEE N H, et al. Synthesis and characterization of carbon-doped titania as an artificial solar light sensitive photocatalyst[J]. Chem. Phys. Lett., 2005, 404(1-3):25-29. |
[40] | REN W, AI Z, JIA F, et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Appl. Catal. B:Environ., 2007, 69(3):138-144. |
[41] | GUAYAQUIL-SOSA J F, SERRANO-ROSALES B, et al. Photocatalytic hydrogen production using mesoporous TiO2 doped with Pt[J]. Appl. Catal. B:Environ., 2017, 211:337-348. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[8] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[9] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[10] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[14] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[15] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||