化工学报 ›› 2023, Vol. 74 ›› Issue (9): 3716-3730.DOI: 10.11949/0438-1157.20230548
陈杰1,2(), 林永胜3, 肖恺3, 杨臣1,2(), 邱挺1,2()
收稿日期:
2023-06-07
修回日期:
2023-08-23
出版日期:
2023-09-25
发布日期:
2023-11-20
通讯作者:
杨臣,邱挺
作者简介:
陈杰(1990—),男,博士,副教授,jiechen@fzu.edu.cn
基金资助:
Jie CHEN1,2(), Yongsheng LIN3, Kai XIAO3, Chen YANG1,2(), Ting QIU1,2()
Received:
2023-06-07
Revised:
2023-08-23
Online:
2023-09-25
Published:
2023-11-20
Contact:
Chen YANG, Ting QIU
摘要:
利用碱性催化剂催化乙酸仲丁酯与甲醇酯交换制备仲丁醇已成为化工领域的研究热点。相较于传统催化剂,碱性离子液体具有更高效的催化效率和稳定循环使用特性,是一种具有发展潜力的新型绿色催化剂。为此,设计合成了五种基于胆碱的碱性离子液体,通过表征与实验证实阴离子的碱性是影响其催化活性的关键因素。运用适宜催化剂咪唑化胆碱[Ch][IM]经响应面曲线法获得较适宜的催化反应条件:反应温度为45℃,醇酯比为4.42∶1,催化剂投加量为8.91%,其乙酸仲丁酯的转化率达到93.95%,高于醇钠等传统催化剂,展现出在酯交换反应体系中的高效性与在仲丁醇工业化生产过程中应用的可能性。
中图分类号:
陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730.
Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids[J]. CIESC Journal, 2023, 74(9): 3716-3730.
离子液体 | 核磁数据 |
---|---|
[Ch][IM] | 7.11 (s, 1H, CH), 6.68 (s, 2H, CH2), 3.85 (m, J = 5.3, 2.6 Hz, 2H, CH2), 3.39~3.37 (m, 2H, CH2), 3.12 (s, 9H, CH3) |
[Ch][OH] | 5.74 (t, J = 5.2 Hz, 1H, OH), 3.87~3.74 (m, 2H, CH2), 3.48~3.42 (m, 2H, CH2), 3.17 (s, 9H, CH3) |
[Ch][CH3O] | 3.84 (s, 2H, CH2), 3.38~3.27 (m, 2H, CH2), 3.15 (d, J = 11.5 Hz, 12H, CH3) |
[Ch][1,2,4-Triz] | 6.80 (t, J = 7.7 Hz, 2H, CH), 6.24 (d, J = 8.0 Hz, 2H, CH), 6.06 (t, J = 7.0 Hz, 1H, CH), 3.81 (dt, J = 5.3, 2.6 Hz, 2H, CH2), 3.41~3.28 (m, 2H, CH2), 3.11 (s, 9H, CH3) |
[Ch][2-PyO] | 7.65 (s, 2H, CH), 3.86 (m, J = 5.5, 2.7 Hz, 2H, CH2), 3.40 (dd, J = 4.3, 2.6 Hz, 2H, CH2), 3.13 (s, 9H, CH3) |
表1 胆碱类离子液体1H NMR核磁数据
Table 1 The 1H NMR data of choline-based ionic liquids
离子液体 | 核磁数据 |
---|---|
[Ch][IM] | 7.11 (s, 1H, CH), 6.68 (s, 2H, CH2), 3.85 (m, J = 5.3, 2.6 Hz, 2H, CH2), 3.39~3.37 (m, 2H, CH2), 3.12 (s, 9H, CH3) |
[Ch][OH] | 5.74 (t, J = 5.2 Hz, 1H, OH), 3.87~3.74 (m, 2H, CH2), 3.48~3.42 (m, 2H, CH2), 3.17 (s, 9H, CH3) |
[Ch][CH3O] | 3.84 (s, 2H, CH2), 3.38~3.27 (m, 2H, CH2), 3.15 (d, J = 11.5 Hz, 12H, CH3) |
[Ch][1,2,4-Triz] | 6.80 (t, J = 7.7 Hz, 2H, CH), 6.24 (d, J = 8.0 Hz, 2H, CH), 6.06 (t, J = 7.0 Hz, 1H, CH), 3.81 (dt, J = 5.3, 2.6 Hz, 2H, CH2), 3.41~3.28 (m, 2H, CH2), 3.11 (s, 9H, CH3) |
[Ch][2-PyO] | 7.65 (s, 2H, CH), 3.86 (m, J = 5.5, 2.7 Hz, 2H, CH2), 3.40 (dd, J = 4.3, 2.6 Hz, 2H, CH2), 3.13 (s, 9H, CH3) |
催化剂 | 转化率/%① | pH(水)② | pH(甲醇)② |
---|---|---|---|
氯化胆碱 | 0 | 0 | 0 |
CH3ONa | 84.75 | 12.14 | 11.21 |
[Ch][IM] | 90.35 | 12.80 | 11.36 |
[Ch][OH] | 83.12 | 12.54 | 11.05 |
[Ch][CH3O] | 62.35 | 11.65 | 10.67 |
[Ch][2-PyO] | 56.25 | 11.55 | 10.49 |
[Ch][1,2,4-Triz] | 48.78 | 11.36 | 10.29 |
表2 胆碱类离子液体催化合成仲丁醇的催化活性及其碱性
Table 2 Catalytic performance and basicity of choline-based ionic liquids for the synthesis of sec-butanol
催化剂 | 转化率/%① | pH(水)② | pH(甲醇)② |
---|---|---|---|
氯化胆碱 | 0 | 0 | 0 |
CH3ONa | 84.75 | 12.14 | 11.21 |
[Ch][IM] | 90.35 | 12.80 | 11.36 |
[Ch][OH] | 83.12 | 12.54 | 11.05 |
[Ch][CH3O] | 62.35 | 11.65 | 10.67 |
[Ch][2-PyO] | 56.25 | 11.55 | 10.49 |
[Ch][1,2,4-Triz] | 48.78 | 11.36 | 10.29 |
影响因素 | 水平及范围 | ||
---|---|---|---|
-1 | 0 | 1 | |
反应温度(A)/℃ | 30 | 50 | 70 |
醇酯比(B) | 1∶1 | 3∶1 | 5∶1 |
催化剂投加量(C)/% | 1 | 5 | 9 |
表3 响应面分析的因素和水平
Table 3 The factors and levels of RSM
影响因素 | 水平及范围 | ||
---|---|---|---|
-1 | 0 | 1 | |
反应温度(A)/℃ | 30 | 50 | 70 |
醇酯比(B) | 1∶1 | 3∶1 | 5∶1 |
催化剂投加量(C)/% | 1 | 5 | 9 |
序列 | A | B | C | 乙酸仲丁酯转化率/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 1 | 1 | 0 | 94.01 | 94.87 |
2 | 1 | 0 | -1 | 74.70 | 73.46 |
3 | 0 | 0 | 0 | 86.51 | 85.42 |
4 | -1 | 1 | 0 | 78.85 | 77.46 |
5 | 0 | 0 | 0 | 84.14 | 85.42 |
6 | 0 | 1 | 1 | 94.73 | 94.88 |
7 | -1 | -1 | 0 | 60.66 | 59.80 |
8 | 1 | 0 | 1 | 86.97 | 85.96 |
9 | -1 | 0 | -1 | 48.20 | 49.21 |
10 | 1 | -1 | 0 | 62.35 | 63.74 |
11 | 0 | -1 | -1 | 44.58 | 44.43 |
12 | 0 | 1 | -1 | 65.45 | 65.83 |
13 | 0 | 0 | 0 | 85.70 | 85.42 |
14 | 0 | 0 | 0 | 85.37 | 85.42 |
15 | 0 | 0 | 0 | 85.40 | 85.42 |
16 | 0 | -1 | 1 | 67.87 | 67.49 |
17 | -1 | 0 | 1 | 87.59 | 88.83 |
表4 响应面曲线实验设计及结果
Table 4 Experimental design and results of RSM
序列 | A | B | C | 乙酸仲丁酯转化率/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 1 | 1 | 0 | 94.01 | 94.87 |
2 | 1 | 0 | -1 | 74.70 | 73.46 |
3 | 0 | 0 | 0 | 86.51 | 85.42 |
4 | -1 | 1 | 0 | 78.85 | 77.46 |
5 | 0 | 0 | 0 | 84.14 | 85.42 |
6 | 0 | 1 | 1 | 94.73 | 94.88 |
7 | -1 | -1 | 0 | 60.66 | 59.80 |
8 | 1 | 0 | 1 | 86.97 | 85.96 |
9 | -1 | 0 | -1 | 48.20 | 49.21 |
10 | 1 | -1 | 0 | 62.35 | 63.74 |
11 | 0 | -1 | -1 | 44.58 | 44.43 |
12 | 0 | 1 | -1 | 65.45 | 65.83 |
13 | 0 | 0 | 0 | 85.70 | 85.42 |
14 | 0 | 0 | 0 | 85.37 | 85.42 |
15 | 0 | 0 | 0 | 85.40 | 85.42 |
16 | 0 | -1 | 1 | 67.87 | 67.49 |
17 | -1 | 0 | 1 | 87.59 | 88.83 |
来源 | 方差和 | 自由度 | 均方 | F值 | p值 |
---|---|---|---|---|---|
1.40 | 0.9963 | 0.9916 | 0.9524 | 76.06 | 46.909 |
模型 | 3731.88 | 9 | 414.65 | 210.86 | <0.0001 |
A | 228.23 | 1 | 228.23 | 116.06 | <0.0001 |
B | 1190.23 | 1 | 1190.23 | 605.25 | <0.0001 |
C | 1357.99 | 1 | 1357.99 | 690.55 | <0.0001 |
AB | 45.36 | 1 | 45.36 | 23.07 | 0.0020 |
AC | 183.87 | 1 | 183.87 | 93.50 | <0.0001 |
BC | 8.97 | 1 | 8.97 | 4.56 | 0.0701 |
A2 | 29.00 | 1 | 29.00 | 14.75 | 0.0064 |
B2 | 328.44 | 1 | 328.44 | 167.02 | <0.0001 |
C2 | 299.54 | 1 | 299.54 | 152.32 | <0.0001 |
残差 | 13.77 | 7 | 1.97 | ||
失拟项 | 10.86 | 3 | 3.62 | 4.98 | 0.0775 |
纯误差 | 2.91 | 4 | 0.73 | ||
相关总计 | 3745.65 | 16 | |||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
表5 模型的方差及显著性分析
Table 5 Variance and significance analysis of the model
来源 | 方差和 | 自由度 | 均方 | F值 | p值 |
---|---|---|---|---|---|
1.40 | 0.9963 | 0.9916 | 0.9524 | 76.06 | 46.909 |
模型 | 3731.88 | 9 | 414.65 | 210.86 | <0.0001 |
A | 228.23 | 1 | 228.23 | 116.06 | <0.0001 |
B | 1190.23 | 1 | 1190.23 | 605.25 | <0.0001 |
C | 1357.99 | 1 | 1357.99 | 690.55 | <0.0001 |
AB | 45.36 | 1 | 45.36 | 23.07 | 0.0020 |
AC | 183.87 | 1 | 183.87 | 93.50 | <0.0001 |
BC | 8.97 | 1 | 8.97 | 4.56 | 0.0701 |
A2 | 29.00 | 1 | 29.00 | 14.75 | 0.0064 |
B2 | 328.44 | 1 | 328.44 | 167.02 | <0.0001 |
C2 | 299.54 | 1 | 299.54 | 152.32 | <0.0001 |
残差 | 13.77 | 7 | 1.97 | ||
失拟项 | 10.86 | 3 | 3.62 | 4.98 | 0.0775 |
纯误差 | 2.91 | 4 | 0.73 | ||
相关总计 | 3745.65 | 16 | |||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
催化剂 | 温度/℃ | 醇酯比 | 催化剂投加量 | 时间/min | 反应压力/atm | SBAC转化率/% | 文献 |
---|---|---|---|---|---|---|---|
A-36 | 60 | 2∶1 | — | 120 | 1 | 77 | [ |
NKC-9 | 65 | 3∶1 | 20%(MeOH) | 160 | 1 | 50 | [ |
Hβ-20%-200 | 95 | 4∶1 | 3 g | — | 15 | 49.6 | [ |
[C8VIm][OH] | 68 | 3.5∶1 | 5%(SBAC) | 80 | 1 | 82.3 | [ |
[HSO3Pmim]HSO4 | 90 | 3.5∶1 | 2%(MeOH+SBAC) | 300 | 1 | 90 | [ |
[HSO3-PMIM]P-TSA | — | 4∶1 | 1% | — | 6 | 75 | [ |
[Ch][IM] | 44.46 | 4.42∶1 | 8.91%(MeOH+SBAC) | 60 | 1 | 93.95 | 本工作 |
表6 不同催化剂在乙酸仲丁酯酯交换中的应用
Table 6 Reported catalysts in transesterification of sec-butyl acetate
催化剂 | 温度/℃ | 醇酯比 | 催化剂投加量 | 时间/min | 反应压力/atm | SBAC转化率/% | 文献 |
---|---|---|---|---|---|---|---|
A-36 | 60 | 2∶1 | — | 120 | 1 | 77 | [ |
NKC-9 | 65 | 3∶1 | 20%(MeOH) | 160 | 1 | 50 | [ |
Hβ-20%-200 | 95 | 4∶1 | 3 g | — | 15 | 49.6 | [ |
[C8VIm][OH] | 68 | 3.5∶1 | 5%(SBAC) | 80 | 1 | 82.3 | [ |
[HSO3Pmim]HSO4 | 90 | 3.5∶1 | 2%(MeOH+SBAC) | 300 | 1 | 90 | [ |
[HSO3-PMIM]P-TSA | — | 4∶1 | 1% | — | 6 | 75 | [ |
[Ch][IM] | 44.46 | 4.42∶1 | 8.91%(MeOH+SBAC) | 60 | 1 | 93.95 | 本工作 |
1 | Wu T Z, Zhang Q Q, Xin H, et al. Study on the selective separation of methanol and methyl ethyl ketone from the azeotropic system using ionic liquids and their separation mechanism[J]. Journal of Molecular Liquids, 2021, 343: 117571. |
2 | 孙李林. 乙酸仲丁酯深加工方向国内专利技术综述[J]. 山东化工, 2021, 50(24): 67-68. |
Sun L L. Summary of domestic patent technology for deep processing direction of sec-butyl acetate[J]. Shandong Chemical Industry, 2021, 50(24): 67-68. | |
3 | 吴育爱. 正丁烯水合法制甲乙酮装置运行分析[J]. 石化技术与应用, 2006, 24(4): 293-296. |
Wu Y A. Running analysis of preparing methyl ethyl ketone from n-butylene hydration[J]. Petrochemical Technology & Application, 2006, 24(4): 293-296. | |
4 | 徐浩, 李洋, 夏成康, 等. 吡啶硫酸氢盐离子液体催化甘油与乙酸酯化反应动力学[J]. 化工学报, 2020, 71(11): 5178-5187. |
Xu H, Li Y, Xia C K, et al. Kinetics of esterification of glycerol with acetic acid catalyzed by pyridine bisulfate ionic liquid[J]. CIESC Journal, 2020, 71(11): 5178-5187. | |
5 | Fang D R, Ren W Z, Lv H Y, et al. Partial amination of cationic exchange resins and its application in the hydration of butene[J]. Journal of Natural Gas Chemistry, 2012, 21(3): 314-318. |
6 | 孙培永, 贾长斌, 罗学清, 等. 载体改性对Cu/B/Al2O3结构及其催化醋酸仲丁酯加氢性能的影响[J]. 化工学报, 2016, 67(4): 1313-1323. |
Sun P Y, Jia C B, Luo X Q, et al. Effects of support modifications on catalyst structure and catalytic performance for hydrogenation of sec-butyl acetate over Cu/B/Al2O3 catalyst [J]. CIESC Journal, 2016, 67(4): 1313-1323. | |
7 | 吴承明, 任伟峰, 周佳, 等. 仲丁醇合成工艺研究进展[J]. 化学工程师, 2016, 30(7): 61-65. |
Wu C M, Ren W F, Zhou J, et al. Research progress in the synthetic technology of sec-butanol[J]. Chemical Engineer, 2016, 30(7): 61-65. | |
8 | Xu H J, Wang X G, Zou Y M, et al. Exergy, economic and environmental assessment of sec-butyl acetate hydrolysis to sec-butyl alcohol using a combined reaction and extractive distillation system[J]. Fuel, 2021, 286: 119372. |
9 | Li X, Wang H X, Sun P Y, et al. Boron-promoted Cu/ZrO2 catalysts for hydrogenation of sec-butyl acetate: structural evolution and catalytic performance[J]. Molecular Catalysis, 2020, 482: 110698. |
10 | Sun P Y, Wang H X, Luo X Q, et al. Sintering-resistant Cu/B/Ca/Al2O3 catalysts for durable hydrogenation of sec-butyl acetate to 2-butanol and ethanol[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 86-95. |
11 | Wang H X, Wu C M, Bu X W, et al. A benign preparation of sec-butanol via transesterification from sec-butyl acetate using the acidic imidazolium ionic liquids as catalysts[J]. Chemical Engineering Journal, 2014, 246: 366-372. |
12 | Qiu T, Tang W L, Li C G, et al. Reaction kinetics for synthesis of sec-butyl alcohol catalyzed by acid-functionalized ionic liquid[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 106-111. |
13 | Bora A P, Gupta D P, Durbha K S. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel, 2020, 259: 116262. |
14 | Santos S, Puna J, Gomes J. A review on bio-based catalysts (immobilized enzymes) used for biodiesel production[J]. Energies, 2020, 13(11): 3013. |
15 | Abdullah S H Y S, Hanapi N H M, Azid A, et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1040-1051. |
16 | Samuilov A Y, Korshunov M V, Samuilov Y D. Transesterification of diethyl carbonate with methanol catalyzed by sodium methoxide[J]. Russian Journal of Organic Chemistry, 2019, 55(9): 1338-1343. |
17 | 黄振东, 王睿, 于美青. KOH/ZrO2催化制备生物柴油新工艺[J]. 化工学报, 2016, 67(S2): 176-183. |
Huang Z D, Wang R, Yu M Q. New technique of biodiesel preparation catalyzed by KOH/ZrO2 [J]. CIESC Journal, 2016, 67(S2): 176-183. | |
18 | Ong H C, Tiong Y W, Goh B H H, et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: opportunities and challenges[J]. Energy Conversion and Management, 2021, 228: 113647. |
19 | Qiao Y X, Ma W B, Theyssen N, et al. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications[J]. Chemical Reviews, 2017, 117(10): 6881-6928. |
20 | Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 405-416. |
21 | Steinrück H P, Wasserscheid P. Ionic liquids in catalysis[J]. Catalysis Letters, 2015, 145(1): 380-397. |
22 | Ruesgas-Ramón M, Figueroa-Espinoza M C, Durand E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities[J]. Journal of Agricultural and Food Chemistry, 2017, 65(18): 3591-3601. |
23 | Liu P, Hao J W, Mo L P, et al. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. RSC Advances, 2015, 5(60): 48675-48704. |
24 | Paiva A, Craveiro R, Aroso I, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071. |
25 | Gadilohar B L, Shankarling G S. Choline based ionic liquids and their applications in organic transformation[J]. Journal of Molecular Liquids, 2017, 227: 234-261. |
26 | Zhu A L, Feng W L, Li Z Y, et al. Cleaner enzymatic production of biodiesel with easy separation procedures triggered by a biocompatible hydrophilic ionic liquid[J]. Green Chemistry, 2020, 22(6): 1944-1951. |
27 | De C Y, Lu B, Lv H, et al. One-pot synthesis of dimethyl carbonate from methanol, propylene oxide and carbon dioxide over supported choline hydroxide/MgO[J]. Catalysis Letters, 2009, 128(3): 459-464. |
28 | Fan M M, Huang J L, Yang J, et al. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst[J]. Applied Energy, 2013, 108: 333-339. |
29 | Fan M M, Yang J, Jiang P P, et al. Synthesis of novel dicationic basic ionic liquids and its catalytic activities for biodiesel production[J]. RSC Advances, 2013, 3(3): 752-756. |
30 | 陆俊凤, 孙怀宇, 王艳磊, 等. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
Lu J F, Sun H Y, Wang Y L, et al. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds[J]. CIESC Journal, 2023, 74(9): 3665-3680. | |
31 | Ullah Z, Khan A S, Muhammad N, et al. A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel[J]. Journal of Molecular Liquids, 2018, 266: 673-686. |
32 | 张雅婷, 熊文杰, 赵天翔, 等. 咪唑类离子液体混合物用于二氧化硫高效吸收[J]. 化工学报, 2020, 71(11): 5035-5042. |
Zhang Y T, Xiong W J, Zhao T X, et al. High capacity absorption of SO2 using imidazole ionic liquid mixtures[J]. CIESC Journal, 2020, 71(11): 5035-5042. | |
33 | Wu C M, Gao Z Y, Wang Y, et al. Efficient synthesis of sec-butanol from sec-butyl acetate under mild conditions with the basic ionic liquid catalysts[J]. Chemical Engineering Journal, 2018, 354: 599-605. |
34 | 常飞琴. 纳米固体碱催化制备生物柴油的研究[D]. 西安: 西安石油大学, 2017. |
Chang F Q. Study on preparation of biodiesel catalyzed by nano-solid alkali[D]. Xi'an: Xi'an Shiyou University, 2017. | |
35 | 翟明路. 钙基固体碱催化碳酸丙烯酯与甲醇酯交换制备碳酸二甲酯研究[D]. 开封: 河南大学, 2020. |
Zhai M L. Study on preparation of dimethyl carbonate by transesterification of propylene carbonate with methanol catalyzed by calcium-based solid base[D]. Kaifeng: Henan University, 2020. | |
36 | 郑佳丽, 李志会, 赵新强, 等. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
Zheng J L, Li Z H, Zhao X Q, et al. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran[J]. CIESC Journal, 2023, 74(9): 3708-3715. | |
37 | 蔡东仁, 詹国武, 肖静冉, 等. 磺酸功能化离子液体的合成及催化制备生物柴油应用[J]. 化工学报, 2021, 72(7): 3601-3612. |
Cai D R, Zhan G W, Xiao J R, et al. Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production[J]. CIESC Journal, 2021, 72(7): 3601-3612. | |
38 | Yang J B, Zeng T, Cai D R, et al. Supported ionic liquids as green catalyst for 2-butanol synthesis from transesterification of sec-butyl acetate[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 901-909. |
39 | Liu G H, Yang J Y, Xu X R. Synthesis of hydrotalcites from waste steel slag with [bmim]OH intercalated for the transesterification of glycerol carbonate[J]. Molecules, 2020, 25(19): 4355. |
40 | Arumugam S, Chengareddy P, Tamilarasan A, et al. RSM and crow search algorithm-based optimization of ultrasonicated transesterification process parameters on synthesis of polyol ester-based biolubricant[J]. Arabian Journal for Science and Engineering, 2019, 44(6): 5535-5548. |
41 | 石象鹏, 湛明, 余良军, 等. 酯交换法制备仲丁醇的关键技术研究[J]. 广东化工, 2019, 46(7): 69-70, 86. |
Shi X P, Zhan M, Yu L J, et al. Research on sec-butyl alcohol production by transesterification[J]. Guangdong Chemical Industry, 2019, 46(7): 69-70, 86. | |
42 | 李柏春, 高永宽, 王晓文, 等. 酯交换法合成仲丁醇的动力学研究[J]. 化学工程, 2016, 44(9): 49-54. |
Li B C, Gao Y K, Wang X W, et al. Reaction kinetics of synthesized sec-butyl alcohol by trans-esterification[J]. Chemical Engineering (China), 2016, 44(9): 49-54. | |
43 | 李飞杰. Hβ分子筛的改性及其催化酯交换制备仲丁醇的研究[D]. 北京: 中国石油大学(北京), 2018. |
Li F J. Study on modification of Hβ molecular sieve and its catalytic transesterification to prepare sec-butanol[D]. Beijing: China University of Petroleum, 2018. | |
44 | 罗金平. 功能化离子液体的合成及在酯交换中的应用[D]. 天津: 河北工业大学, 2021. |
Luo J P. Synthesis of functionalized ionic liquids and its application in transesterification[D]. Tianjin: Hebei University of Technology, 2021. | |
45 | 吴承明. 基于酸性离子液体合成仲丁醇反应精馏过程研究[D]. 福州: 福州大学, 2014. |
Wu C M. Study on reactive distillation process of synthesizing sec-butanol based on acidic ionic liquid[D]. Fuzhou: Fuzhou University, 2014. | |
46 | Luo H, Zhai Z, Fan W Y, et al. Monoacylglycerol synthesis by glycerolysis of soybean oil using alkaline ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 4923-4928. |
47 | Cui X B, Cai J L, Zhang Y, et al. Kinetics of transesterification of methyl acetate and n-butanol catalyzed by ionic liquid[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11521-11527. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[8] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[9] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[10] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[11] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[12] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[13] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[14] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[15] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||