化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3342-3352.DOI: 10.11949/0438-1157.20230402
李凯旋1(), 谭伟1, 张曼玉2, 徐志豪1, 王旭裕2,4(
), 纪红兵1,2,3,4,5(
)
收稿日期:
2023-04-26
修回日期:
2023-08-15
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
王旭裕,纪红兵
作者简介:
李凯旋(1998—),男,硕士研究生,1227423220@qq.com
基金资助:
Kaixuan LI1(), Wei TAN1, Manyu ZHANG2, Zhihao XU1, Xuyu WANG2,4(
), Hongbing JI1,2,3,4,5(
)
Received:
2023-04-26
Revised:
2023-08-15
Online:
2023-08-25
Published:
2023-10-18
Contact:
Xuyu WANG, Hongbing JI
摘要:
具有低成本、高效率的挥发性有机化合物(VOC)氧化催化剂对于环境保护至关重要。钴-氮-碳(CoNC)材料由于其高度分散的Co与氮配位形成CoN x 后可较好地进行氧物种的活化,在光催化、电催化氧化领域表现出超高的催化活性。但目前将CoNC催化剂应用于甲醛催化氧化尚未得到广泛研究。合成了钴氮碳/活性炭(CoNC/AC)系列催化剂,通过控制热解温度调节CoNC/AC表面的化学组成和活性位点分布,在700℃下获得的CoNC/AC催化剂在25℃下可实现70 mg·m-3 HCHO 95%的转化率,3300 h稳定性测试发现催化剂HCHO转化率依然稳定在90%左右。与贵金属相比,过渡金属CoNC/AC催化剂具有出色的HCHO去除能力和低成本的优势。此外,通过相关性分析和原位红外揭示了CoNC/AC催化剂上的HCHO去除机制,表明HCHO分子可以与吸附在0价Co位点的O2反应,在室温下生成CO2和H2O(CH2O→HCHO2→CHO2→CO2)。
中图分类号:
李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352.
Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde[J]. CIESC Journal, 2023, 74(8): 3342-3352.
图1 x-CoNC/AC (x=300, 500, 700, 900)的甲醛活性测试和700-CoNC/AC的稳定性测试
Fig.1 The activity test of x-CoNC/AC (x=300, 500, 700, 900) and stability test of 700-CoNC/AC in HCHO catalytic oxidation
图3 x-CoNC/AC (x=300, 500, 700, 900)的N2等温吸脱附曲线和孔径分布
Fig.3 N2 adsorption-desorption curves and pore size distributions of x-CoNC/AC (x=300, 500, 700, 900)
Simple | BET surface area/ (m2·g-1) | Pore volume/ (cm3·g-1) | Pore size /nm |
---|---|---|---|
300-CoNC/AC | 43.26 | 0.15 | 9.45 |
500-CoNC/AC | 37.87 | 0.07 | 6.82 |
700-CoNC/AC | 205.89 | 0.24 | 6.51 |
900-CoNC/AC | 319.23 | 0.17 | 4.30 |
表1 x-CoNC/AC (x=300, 500, 700, 900)的比表面积和孔结构参数
Table 1 Specific surface areas and pore structures of x-CoNC/AC (x=300, 500, 700, 900)
Simple | BET surface area/ (m2·g-1) | Pore volume/ (cm3·g-1) | Pore size /nm |
---|---|---|---|
300-CoNC/AC | 43.26 | 0.15 | 9.45 |
500-CoNC/AC | 37.87 | 0.07 | 6.82 |
700-CoNC/AC | 205.89 | 0.24 | 6.51 |
900-CoNC/AC | 319.23 | 0.17 | 4.30 |
种类 | 相对数量/% | |||
---|---|---|---|---|
300-CoNC/ AC | 500-CoNC/AC | 700-CoNC/AC | 900-CoNC/AC | |
C | 49.9 | 59.9 | 59.4 | 37.6 |
C—O | 19.2 | 10.5 | 29.7 | 28.8 |
O—C | 30.9 | 29.6 | 10.9 | 33.7 |
吡啶N | 17.7 | 40.0 | 35.0 | 16.3 |
吡咯N | 45.9 | 26.0 | 19.6 | 0.1 |
氮氧化物 | 18.8 | 16.4 | 23.1 | 30.9 |
石墨N | 17.6 | 17.6 | 22.3 | 52.7 |
Co (0) | 0 | 3.9 | 11.0 | 44.9 |
Co—O | 7.4 | 35.1 | 47.9 | 22.6 |
Co—N x | 52.3 | 31.7 | 19.0 | 20.5 |
satellites | 40.3 | 29.3 | 22.1 | 11.9 |
表2 x-CoNC/AC (x=300, 500, 700, 900)的相关功能活性位点的相对数量
Table 2 Relative amount of functional active sites in x-CoNC/AC (x=300, 500, 700, 900)
种类 | 相对数量/% | |||
---|---|---|---|---|
300-CoNC/ AC | 500-CoNC/AC | 700-CoNC/AC | 900-CoNC/AC | |
C | 49.9 | 59.9 | 59.4 | 37.6 |
C—O | 19.2 | 10.5 | 29.7 | 28.8 |
O—C | 30.9 | 29.6 | 10.9 | 33.7 |
吡啶N | 17.7 | 40.0 | 35.0 | 16.3 |
吡咯N | 45.9 | 26.0 | 19.6 | 0.1 |
氮氧化物 | 18.8 | 16.4 | 23.1 | 30.9 |
石墨N | 17.6 | 17.6 | 22.3 | 52.7 |
Co (0) | 0 | 3.9 | 11.0 | 44.9 |
Co—O | 7.4 | 35.1 | 47.9 | 22.6 |
Co—N x | 52.3 | 31.7 | 19.0 | 20.5 |
satellites | 40.3 | 29.3 | 22.1 | 11.9 |
图7 CoNC/AC催化剂中活性位点、SBET、孔容、孔径与催化效率的相关性
Fig.7 Correlation between active sites of catalysts, SBET, pore volume, pore size and conversion in CoNC/AC catalysts
1 | Hult E L, Willem H, Price P N, et al. Formaldehyde and acetaldehyde exposure mitigation in US residences: in-home measurements of ventilation control and source control[J]. Indoor Air, 2015, 25(5): 523-535. |
2 | Mo J H, Zhang Y P, Xu Q J, et al. Photocatalytic purification of volatile organic compounds in indoor air: a literature review[J]. Atmospheric Environment, 2009, 43(14): 2229-2246. |
3 | Luecken D J, Mebust M R. Technical challenges involved in implementation of VOC reactivity-based control of ozone[J]. Environmental Science & Technology, 2008, 42(5): 1615-1622. |
4 | Ye J W, Zhu X F, Cheng B, et al. Few-layered graphene-like boron nitride: a highly efficient adsorbent for indoor formaldehyde removal[J]. Environmental Science & Technology Letters, 2017, 4(1): 20-25. |
5 | Tejasvi R, Sharma M, Upadhyay K. Passive photo-catalytic destruction of air-borne VOCs in high traffic areas using TiO2-coated flexible PVC sheet[J]. Chemical Engineering Journal, 2015, 262: 875-881. |
6 | Ai Z H, Lee S C, Huang Y, et al. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 141-150. |
7 | Nguyen V T, Dinh D K, Mok Y S, et al. High-throughput volatile organic compounds removal in a sandwich-type honeycomb catalyst system combined with plasma[J]. Applied Catalysis B: Environmental, 2022, 310: 121328. |
8 | Huang Y C, Long B, Tang M N, et al. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 181: 779-787. |
9 | Huang Y, Liu Y, Wang W, et al. Oxygen vacancy-engineered δ-MnO x /activated carbon for room-temperature catalytic oxidation of formaldehyde[J]. Applied Catalysis B: Environmental, 2020, 278: 119294. |
10 | 李治东, 万佳琪, 刘莹, 等. 一步法合成α-MnO2/β-MnO2催化剂及其对甲苯催化氧化的性能研究[J]. 化工学报, 2022, 73(8): 3615-3624. |
Li Z D, Wan J Q, Liu Y, et al. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene[J]. CIESC Journal, 2022, 73(8): 3615-3624. | |
11 | Zhao D Z, Li X S, Shi C, et al. Low-concentration formaldehyde removal from air using a cycled storage-discharge (CSD) plasma catalytic process[J]. Chemical Engineering Science, 2011, 66(17): 3922-3929. |
12 | Duong A, Steinmaus C, McHale C M, et al. Reproductive and developmental toxicity of formaldehyde: a systematic review[J]. Mutation Research, 2011, 728(3): 118-138. |
13 | Zhang Z X, Jiang Z, Shangguan W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review[J]. Catalysis Today, 2016, 264: 270-278. |
14 | Zhou Y L, Wei F F, Qi H F, et al. Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation[J]. Nature Catalysis, 2022, 5(12): 1145-1156. |
15 | Zhang C X, Li S R, Wang T, et al. Pt-based core-shell nanocatalysts with enhanced activity and stability for CO oxidation[J]. Chemical Communications, 2013, 49(90): 10647-10649. |
16 | Yusuf A, Snape C, He J, et al. Advances on transition metal oxides catalysts for formaldehyde oxidation: a review[J]. Catalysis Reviews, 2017, 59(3): 189-233. |
17 | Ye J W, Yu Y, Fan J J, et al. Room-temperature formaldehyde catalytic decomposition[J]. Environmental Science: Nano, 2020, 7(12): 3655-3709. |
18 | Zhu D D, Chen M J, Huang Y, et al. Tuning the nitrogen contents in carbon matrix encapsulating Co nanoparticles for promoting formaldehyde removal through Mott-Schottky effect[J]. Applied Surface Science, 2022, 583: 152552. |
19 | Tang C H, Surkus A E, Chen F, et al. A stable nanocobalt catalyst with highly dispersed CoN x active sites for the selective dehydrogenation of formic acid[J]. Angewandte Chemie International Edition, 2017, 56(52): 16616-16620. |
20 | Wu Z Y, Xu S L, Yan Q Q, et al. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials[J]. Science Advances, 2018, 4(7): eaat0788. |
21 | 张浩, 王子悦, 程钰洁, 等. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
Zhang H, Wang Z Y, Cheng Y J, et al. Progress in the mass production of single-atom catalysts[J]. CIESC Journal, 2023, 74(1): 276-289. | |
22 | Yuan M, Long Y, Yang J, et al. Biomass sucrose-derived cobalt@nitrogen-doped carbon for catalytic transfer hydrogenation of nitroarenes with formic acid[J]. ChemSusChem, 2018, 11(23): 4156-4165. |
23 | Luo J M, Bo S F, An Q D, et al. Designing ordered composites with confined Co-N/C layers for efficient pollutant degradation: structure-dependent performance and PMS activation mechanism[J]. Microporous and Mesoporous Materials, 2020, 293: 109810. |
24 | Liu N, Lu N, Yu H T, et al. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: catalyst design, reaction kinetic and mechanism analysis[J]. Chemical Engineering Journal, 2021, 407: 127228. |
25 | Li N, Li R, Duan X G, et al. Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon[J]. Environmental Science & Technology, 2021, 55(23): 16163-16174. |
26 | Xie W F, Li J M, Song Y K, et al. Hierarchical carbon Microtube@Nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery[J]. Nano-Micro Letters, 2020, 12: 97. |
27 | Zhang W M, Yao X Y, Zhou S N, et al. ZIF-8/ZIF-67-derived Co-N x -embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst[J]. Small, 2018, 14(24): 1800423. |
28 | Miao J, Geng W, Alvarez P J J, et al. 2D N-doped porous carbon derived from polydopamine-coated graphitic carbon nitride for efficient nonradical activation of peroxymonosulfate[J]. Environmental Science & Technology, 2020, 54(13): 8473-8481. |
29 | Chu C H, Yang J, Zhou X C, et al. Cobalt single atoms on tetrapyridomacrocyclic support for efficient peroxymonosulfate activation[J]. Environmental Science & Technology, 2021, 55(2): 1242-1250. |
30 | Liang P, Zhang C, Duan X G, et al. N-doped graphene from metal-organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2693-2701. |
31 | Xue Y D, Pham N N T, Nam G, et al. Persulfate activation by ZIF-67-derived cobalt/nitrogen-doped carbon composites: kinetics and mechanisms dependent on persulfate precursor[J]. Chemical Engineering Journal, 2021, 408: 127305. |
32 | Huang Z F, Bao H W, Yao Y Y, et al. Novel green activation processes and mechanism of peroxymonosulfate based on supported cobalt phthalocyanine catalyst[J]. Applied Catalysis B: Environmental, 2014, 154/155: 36-43. |
33 | Zhang L L, Wang A Q, Wang W T, et al. Co-N-C catalyst for C-C coupling reactions: on the catalytic performance and active sites[J]. ACS Catalysis, 2015, 5(11): 6563-6572. |
34 | Zhou X, Gao Y J, Deng S W, et al. Improved oxygen reduction reaction performance of Co confined in ordered N-doped porous carbon derived from ZIF-67@PILs[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11100-11110. |
35 | Tang H, Zhang J, Huang M, et al. Remarkable performance of atomically dispersed cobalt catalyst for catalytic removal of indoor formaldehyde[J]. Journal of Colloid and Interface Science, 2022, 624: 527-536. |
36 | Ma C Y, Wang D H, Xue W J, et al. Investigation of formaldehyde oxidation over Co3O4-CeO2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism[J]. Environmental Science & Technology, 2011, 45(8): 3628-3634. |
37 | Xu Z H, Yu J G, Jaroniec M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt[J]. Applied Catalysis B: Environmental, 2015, 163: 306-312. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[10] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[11] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 464
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 233
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||