[1] |
胡俊刚, 胡雪梅. 城镇污水处理厂运营现状及自动化控制的应用[J]. 武汉理工大学学报, 2002, 11(24):66-69. HU J G, HU X M. Management and automatically control in water treatment[J]. Journal of Wuhan University of Technology, 2002, 11(24):66-69.
|
[2] |
李晓东, 曾光明, 蒋茹, 等. 改进支持向量机对污水处理厂运行状况的故障诊断[J]. 湖南大学学报, 2007, 34(12):68-71. LI X D, ZENG G M, JIANG R, et al. Fault diagnosis of operation status of wastewater treatment plant based on improved support vector machine[J]. Journal of Hunan University, 2007, 34(12):68-71.
|
[3] |
陆林花. 聚类算法及其在污水处理工艺故障诊断中的应用研究[D]. 重庆:重庆大学, 2007. LU L H. Clustering algorithm and its application in fault diagnosis of wastewater treatment process[D]. Chongqing:Chongqing University, 2013.
|
[4] |
MOON T, KIM Y, KIM H, et al. Fuzzy rule-based inference of reasons for high effluent quality in municipal wastewater treatment plant[J]. Korean Journal of Chemical Engineering, 2011, 28(3):817-824.
|
[5] |
TAO E P, SHEN W H, LIU T L, et al. Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 128(8):49-55.
|
[6] |
沈文浩, 祝跃飞, 陶二盼. 基于批次展开的MPCA的造纸污水处理过程故障诊断[C]//第33届中国控制会议. 南京, 2014:3238-3249. SHEN W H, ZHU Y F, TAO E P. Fault diagnosis of papermaking wastewater treatment process based on batch-based MPCA[C]//Proceedings of the 33rd China Control Conference. Nanjing, 2014:3238-3249.
|
[7] |
刘宇. 城市污水处理厂A2/O工艺故障诊断专家系统研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LIU Y. The study of A2/O technical fault diagnosis expert system of urban wastewater treatment plant[D]. Harbin:Harbin University of Technology, 2013.
|
[8] |
刘乙奇, 李艳, 孙宗海, 等. 面向污水处理过程因子分析故障诊断方法的研究[J], 控制工程, 2015, 22(3):447-451. LIU Y Q, LI Y, SUN Z H, et al. Research on fault diagnosis of wastewater treatment process based on factor analysis[J]. Control Engineering of China, 2015, 22(3):447-451.
|
[9] |
肖红军, 刘乙奇, 黄道平. 面向污水处理的动态变分贝叶斯混合因子故障诊断[J]. 控制理论与应用, 2016, 33(11):1519-1525. XIAO H J, LIU Y Q, HUANG D P. Dynamic fault diagnosis via variational Bayesian mixture factor analysis with application to wastewater treatment[J]. Control Theory & Applications, 2016, 33(11):1519-1525.
|
[10] |
岳宇飞, 罗健旭. 一种改进的SOM神经网络在污水处理故障诊断中的应用[J]. 华东理工大学学报(自然科学版), 2017, 43(3):389-395. YUE Y F, LUO J X. An application of improved SOM neural network in fault diagnosis of wastewater treatment[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(3):389-395.
|
[11] |
GUO H, LI Y, SHANG J, et al. Learning from class-imbalanced data:review of method and applications[J]. Expert System with Applications, 2017, 73(5):220-239.
|
[12] |
HE H, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge & Data Engineering, 2009, 21(9):1263-1284.
|
[13] |
SOTIRIS K, DIMITRIS K, PANAYIOTIS P. Handling imbalanced datasets:a review[J]. International Transactions on Computer Science and Engineering, 2006, 30(1):1425-1436.
|
[14] |
LOPEZ V, FERNANDEZ A, JOSE G, et al. Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics[J]. Expert System with Applications, 2012, 39(7):6585-6608.
|
[15] |
FERNANDEZ A, LOPEZ V, GALAR M, et al. Analysing the classification of imbalanced data-sets with multiple classes:binarization techniques and ad-hoc approaches[J]. Knowledge-Based Systems, 2013, 42(4):97-110.
|
[16] |
BRANCO P, TORGO L, RIBEIRO R. A survey of predictive modeling on imbalanced domains[J]. AMC Computing Surveys, 2016, 49(2):31-50.
|
[17] |
YANG P, YOO P D, FERNANDO J, et al. Sample subset optimization techniques for imbalanced and ensemble learning problems in bioinformatics applications[J]. IEEE Transactions on Cybernetics, 2014, 44(3):445-455.
|
[18] |
QIAN Y, LIANG Y C, GUAN R C. Improving activated sludge classification based on imbalanced data[J]. Journal of Hydroinformatics, 2014, 16(6):1331-1342.
|
[19] |
钱云. 非均衡数据分类算法若干应用研究[D]. 长春:吉林大学, 2014. QIAN Y. Research on application of classification algorithms for imbalanced data[D]. Changchun:Jilin University, 2014.
|
[20] |
XU Y G, DENG W K, SONG B, et al. Pre-processing of imbalanced samples and the effective contribution in fault diagnosis in wastewater treatment plants[J]. Journal of Hydroinformatics, 2017, 19(2):251-260.
|
[21] |
许玉格, 邓文凯. 基于核函数的加权极限学习机污水处理在线故障诊断[J]. 化工学报, 2016, 67(9):3817-3825. XU Y G, DENG W K. Online fault diagnosis of the weighted extreme learning machine based on kernel function[J]. CIESC Journal, 2016, 67(9):3817-3825.
|
[22] |
PEREZ J M, MUGUERZA J, ARBELAITZ O, et al. Consolidated tree classifier learning in a car insurance fraud detection domain with class imbalance[M]//Pattern Recognition and Data Mining. Springer Berlin Heidelberg, 2005:381-389.
|
[23] |
NG W W Y, HU J J, YEUNG D S, et al. Diversified sensitivity-based undersampling for imbalance classification problems[J]. IEEE Transactions on Cybernetics, 2015, 45(11):2402-2412.
|
[24] |
LEE T, LEE K B, KIM O C. Performance of machine learning algorithms for class-imbalanced process fault detection problems[J]. IEEE Transactions on Semiconductor Manufacturing, 2016, 29(4):436-445.
|
[25] |
KWAK J, LEE T, KIM O C. An incremental clustering-based fault detection algorithm for class-imbalanced process data[J]. IEEE Transactions on Semiconductor Manufacturing, 2015, 28(3):318-328.
|
[26] |
FREUND Y, SCHAPIRE R E. Experiments with a new boosting algorithm[C]//MORGAN K. Proceedings of the Thirteenth International Conference on Machine Learning (ICML 1996). Bari, Italy, 1996:148-156
|
[27] |
GALAR M, FERNANDEZ A, BARRENECHEA E, et al. A review on ensembles for the class imbalance problem bagging, boosting and hybrid based approaches[J]. IEEE Transactions on Systems and Cybernetics-Part C:Applications and Reviews, 2012, 42(4):463-484.
|
[28] |
HUANG G B, ZHU Q Y, LYU M R. Extreme learning machine:theory and applications[J]. Neurocomputing, 2006, 70(1):489-501.
|
[29] |
ZONG W, HUANG G B, CHEN Y. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101(4):229-242.
|