[1] |
张仲彬, 徐志明, 张兵强. 缩放管传热与污垢特性的实验研究[J]. 化工机械, 2008, 35(2):65-68. ZHANG Z B, XU Z M, ZHANG B Q. Experimental investigation on the heat transfer and fouling characteristic of convergent divergent tubes[J]. Chemical Engineering and Machinery, 2008, 35(2):65-68.
|
[2] |
WANG Y, HE Y L, YANG W W, et al. Numerical analysis of flow resistance and heat transfer in a channel with delta winglets under laminar pulsating flow[J]. International Journal of Heat and Mass Transfer, 2015, 82:51-65.
|
[3] |
林纬. 脉动流与壁面振动强化传热及除垢特性研究[D]. 武汉:武汉理工大学, 2015. LIN W. Research on heat transfer and fouling cleaning enhancement of pulsating flow and tube vibration[D]. Wuhan:Wuhan University of Technology, 2015.
|
[4] |
MILLWARD H R, BELLHOUSE B J, SOBEY I J, et al. Enhancement of plasma filtration using the concept of the vortex wave[J]. Journal of Membrane Science, 1995, 100(2):121-129.
|
[5] |
MILLWARD H R, BELLHOUSE B J, SOBEY I J. The vortex wave membrane bioreactor:hydrodynamics and mass transfer[J]. The Chemical Engineering Journal, 1996, 62(3):175-181.
|
[6] |
HWU T H, SOBEY I J, BELLHOUSE B J. Observation of concentration dispersion in unsteady deflected flows[J]. Chemical Engineering Science, 1996, 51(13):3373-3390.
|
[7] |
LEE B S, KANG I S, LIM H C. Chaotic mixing and mass transfer enhancement by pulsatile laminar flow in an axisymmetric wavy channel[J]. International Journal of Heat and Mass Transfer, 1999, 42(14):2571-2581.
|
[8] |
NISHIMURA T, OKA N, YOSHINAKA Y, et al. Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow[J]. International Journal of Heat and Mass Transfer, 2000, 43(13):2365-2374.
|
[9] |
NISHIMURA T, BIAN Y N, KUNITSUGU K. Mass-transfer enhancement in a wavy-walled tube by imposed fluid oscillation[J]. AIChE Journal, 2004, 50(4):762-770.
|
[10] |
JIN D X, LEE Y P, LEE D Y. Effects of the pulsating flow agitation on heat transfer in a triangular grooved channel[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16):3062-3071.
|
[11] |
MOHAMMAD J, MOUSA F, KUROSH S. Pulsating flow effects on convection heat transfer in a corrugated channel:a LBM approach[J]. International Communications in Heat and Mass Transfer, 2013, 45(7):146-154.
|
[12] |
何雅玲, 杨卫卫, 赵春凤, 等. 脉动流动强化换热的数值研究[J]. 工程热物理学报, 2005, 26(3):495-497. HE Y L, YANG W W, ZHAO C F, et al. Numerical study on enhancing heat transfer by pulsating flow[J]. Journal of Engineering Thermophysics, 2005, 26(3):495-497.
|
[13] |
杨卫卫, 何雅玲, 陶文铨, 等. 凹槽通道中脉动流动强化传质的数值研究[J]. 西安交通大学学报, 2004, 38(11):1119-1122. YANG W W, HE Y L, TAO W Q, et al. Numerical study on enhancing mass transfer in grooved channel by pulsating flow[J]. Journal of Xi'an Jiaotong University, 2004, 38(11):1119-1122.
|
[14] |
谢公南, 王秋旺, 曾敏, 等. 渐扩渐缩波纹通道脉动流的传热强化[J]. 高校化学工程学报, 2006, 20(1):31-35. XIE G N, WANG Q W, ZENG M, et al. Heat transfer enhancement inside converging-diverging wavy channel by pulsating flow[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(1):31-35.
|
[15] |
贾宝菊, 孙发明, 卞永宁, 等. 波壁管内的脉动流动及传质强化的数值模拟[J]. 化工学报, 2009, 60(1):6-14. JIA B J, SUN F M, BIAN Y N, et al. Numerical simulation of pulsatile flow and mass transfer enhancement in a wavy-walled tube[J]. CIESC Journal, 2009, 60(1):6-14.
|
[16] |
黄其, 王勋廷, 杨志超, 等. 有序涡旋对三角槽道脉动流传热的影响[J]. 化工学报, 2016, 67(9):3616-3624. HUANG Q, WANG X T, YANG Z C, et al. Influence of vortex on heat transfer enhancement in triangular grooved channel by pulsating flow[J]. CIESC Journal, 2016, 67(9):3616-3624.
|
[17] |
钟英杰, 王勋廷, 黄其, 等. 基于场协同理论的脉动流传热机理探究[J]. 浙江工业大学学报, 2015, 43(2):180-184. ZHONG Y J, WANG X T, HUANG Q, et al. A study of heat transfer mechanism in a pulsating flow based on field synergy theory[J]. Journal of Zhejiang University of Technology, 2015, 43(2):180-184.
|
[18] |
王勋廷. 基于场协同理论的脉动流传热机理研究和火积耗散评价[D]. 杭州:浙江工业大学, 2015. WANG X T. Study of heat transfer mechanism based on field synergy theory and entransy dissipation evaluation in a pulsating flow[D]. Hangzhou:Zhejiang University of Technology, 2015.
|
[19] |
杨志超. 脉动流在三角槽道内强化传热的机理研究[D]. 杭州:浙江工业大学, 2013. YANG Z C. Mechanism of heat transfer enhancement in a triangular grooved channel for pulsating flow[D]. Hangzhou:Zhejiang University of Technology, 2013.
|
[20] |
李思文. 脉动流场下涡运动规律的实验研究[D]. 杭州:浙江工业大学, 2012. LI S W. Experimental investigation on the vortex motion in the pulsating flow[D]. Hangzhou:Zhejiang University of Technology, 2012.
|
[21] |
XU S L, WANG W J, FANG K, et al. Heat transfer performance of a fractal silicon microchannel heat sink subjected to pulsation flow[J]. International Journal of Heat and Mass Transfer, 2015, 81(81):33-40.
|
[22] |
XU S L, YANG L L, LI Y, et al. Experimental and numerical investigation of heat transfer for two-layered microchannel heat sink with non-uniform heat flux condition[J]. Heat and Mass Transfer, 2016, 52(9):1755-1763.
|
[23] |
XU S L, LI Y, HU X L, et al. Characteristics of heat transfer and fluid flow in a fractal multilayer silicon microchannel[J]. International Communications in Heat and Mass Transfer, 2016, 71:86-95.
|
[24] |
XU S L, WU Y H, CAI Q Y, et al. Optimization of thermal performance of multilayer silicon microchannel heat sinks[J]. Thermal Science, 2016, 20(6):2001-2013.
|
[25] |
YAN B H, GU H Y. Effect of rolling motion on the expansion and contraction loss coefficients[J]. Annals of Nuclear Energy, 2013, 53(53):259-266.
|
[26] |
WANG C, GAO P Z, TAN S C, et al. Theoretical analysis of phase-lag in low frequency laminar pulsating flow[J]. Progress in Nuclear Energy, 2012, 58(1):45-51.
|
[27] |
WANG C, GAO P Z, TAN S C, et al. Experimental study of friction and heat transfer characteristic in narrow rectangular channel[J]. Nuclear Engineering and Design, 2012, 250(3):646-656.
|
[28] |
WANG C, GAO P Z, TAN S C, et al. Effect of aspect ratio on the laminar-to-turbulent transition in rectangular channel[J]. Annals of Nuclear Energy, 2012, 46(8):90-96.
|
[29] |
WANG C, GAO P Z, WANG Z W, et al. Experimental study of transition from laminar to turbulent flow in vertical narrow channel[J]. Annals of Nuclear Energy, 2012, 47(47):85-90.
|
[30] |
WANG C, GAO P Z, TAN S C, et al. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel[J]. Experimental Thermal and Fluid Science, 2013, 44(1):490-497.
|
[31] |
贾力, 方肇洪. 高等传热学[M]. 北京:高等教育出版社, 2008. JIA L, FANG Z H. Advanced Heat Transfer[M]. Beijing:Higher Education Press, 2008.
|
[32] |
童秉纲, 尹协远, 朱克勤. 涡运动理论[M]. 合肥:中国科学技术大学出版社, 2009. TONG B G, YIN X Y, ZHU K Q. Vortex Motion Theory[M]. Hefei:University of Science and Technology of China Press, 2009.
|
[33] |
KANDLIKAR S G, SHAILESH J, SHURONG T. Effect of surface roughness on heat transfer and fluid flow character at low Reynolds numbers in small diameter tube[J]. Heat Transfer Engineering, 2003, 24(3):4-16.
|
[34] |
KANDLIKAR S G, SCHMITT D, CARRANO A L, et al. Characterization of surface roughness effects on pressure drop in single-phase flow in mini channels[J]. Physics of Fluids, 2005, 17(10):100606.
|
[35] |
CHIEN Y Y, JIUNN C W, HSIN C T, et al. Friction characteristics of water, R134a, and air in small tube[J]. Microscale Thermophysical Engineering, 2003, 7(4):335-348.
|
[36] |
XU B, OOI K T, WONG N T, et al. Experimental investigation of flow friction for liquid flow in microchannels[J]. International Communications in Heat and Mass Transfer, 2000, 27(8):1165-1176.
|
[37] |
陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001. TAO W Q. Numerical Heat Transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001.
|
[38] |
王永庆, 董其伍, 刘敏珊. 混沌对流强化传热的场协同分析[J]. 郑州大学学报, 2011, 32(3):6-9. WANG Y Q, DONG Q W, LIU M S. Analysis of field synergy on heat transfer enhancement in chaotic advection[J]. Journal of Zhengzhou University, 2011, 32(3):6-9.
|
[39] |
SOBEY I J. Observation of waves during oscillatory channel[J]. Journal of Fluid Mechanics, 1985, 151(151):395-426.
|
[40] |
刘凤霞. 涡旋波流动特性及过程强化[D]. 大连:大连理工大学, 2009. LI F X. Hydrodynamic characteristics and process enhancement of vortex wave flow[D]. Dalian:Dalian University of Technology, 2009.
|