化工学报 ›› 2019, Vol. 70 ›› Issue (1): 271-279.DOI: 10.11949/j.issn.0438-1157.20180596
收稿日期:
2018-06-01
修回日期:
2018-10-15
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
周健
作者简介:
陈政(1992—),男,博士研究生; 王莉(1990—),女,硕士研究生。|周健(1973—),男,博士,教授,<email>jianzhou@scut.edu.cn</email>
基金资助:
Zheng CHEN,Li WANG,Jian ZHOU()
Received:
2018-06-01
Revised:
2018-10-15
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jian ZHOU
摘要:
利用计算机模拟方法(耗散粒子动力学)研究了双响应性嵌段聚合物修饰的纳米孔的开关效应。通过在纳米孔内接枝具有温度和pH响应的嵌段聚合物(N-异丙基丙烯酰胺和丙烯酸),研究不同嵌段序列(即wall-PNIPAM-PAA或wall-PAA-PNIPAM)对纳米孔开关效应的影响,结果表明,只有wall-PNIPAM-PAA嵌段序列可以实现纳米孔在不同条件下的开关效应。同时还探究了接枝密度、链长和嵌段比例对纳米孔开关效应的影响,结果表明,中高等接枝密度、适合的链长和中等比例的嵌段比可以实现不同特征的纳米孔,用于控制纳米孔的开关效应。
中图分类号:
陈政, 王莉, 周健. 双响应性嵌段聚合物的纳米孔开关效应的计算机模拟[J]. 化工学报, 2019, 70(1): 271-279.
Zheng CHEN, Li WANG, Jian ZHOU. Computer simulations on switching effect of nanopores modified by dual-responsive block polymers[J]. CIESC Journal, 2019, 70(1): 271-279.
图1 PAA(a), PNIPAM(b)分子的结构及粗粒化模型;聚合物(c)和纳米孔(d)的模型示意图
Fig.1 Molecular structure and coarse-grained models of PAA(a), PNIPAM(b); schematic representation of polymer(c) and nanopore models(d)
Bead | aij | |||
---|---|---|---|---|
A | I | W | P | |
A | 25.00 | |||
I | 43.42 | 25.00 | ||
W | 39.09 | 28.60(45.34) | 25.00 | |
P | 80.00 | 80.00 | 80.00 | 25.00 |
表1 不同珠子之间的排斥参数aij
Table 1 Repulsive parameters aij between different beads
Bead | aij | |||
---|---|---|---|---|
A | I | W | P | |
A | 25.00 | |||
I | 43.42 | 25.00 | ||
W | 39.09 | 28.60(45.34) | 25.00 | |
P | 80.00 | 80.00 | 80.00 | 25.00 |
pH | Dissociation degree of PAA/% |
---|---|
2.3 | 0 |
3 | 5 |
4 | 35 |
5 | 85 |
6 | 98 |
6.3 | 100 |
表2 不同pH下PAA的解离度
Table 2 Dissociation degrees of PAA at different pH
pH | Dissociation degree of PAA/% |
---|---|
2.3 | 0 |
3 | 5 |
4 | 35 |
5 | 85 |
6 | 98 |
6.3 | 100 |
图2 在不同的温度条件下,PAA在完全去质子化和完全质子化时,不同嵌段序列在纳米孔内形成的形貌图
Fig.2 Morphologies of different diblock sequences grafted from nanopore in completely deprotonated and protonated PAA under different temperature conditions
图4 在不同的温度下,PAA完全去质子化和完全质子化,wall-PNIPAM-PAA 嵌段序列在不同接枝密度下的形貌图
Fig.4 Morphologies of wall-PNIPAM-PAA with different grafting densities in completely deprotonated and protonated PAA under different temperature conditions
图5 在298 K和313 K下,PAA完全去质子化和完全质子化,wall-PNIPAM-PAA嵌段序列在不同链长下的形貌图
Fig.5 Morphologies of wall-PNIPAM-PAA with different grafting lengths when PAA is completely deprotonated and protonated at 298 K and 313 K
图7 在不同的温度下,PAA完全去质子化和完全质子化时,纳米孔在不同嵌段比下的形貌图
Fig.7 Morphologies of nanopores with different block ratios in completely deprotonated and protonated PAA under different temperatures
1 | Xie R , Li Y , Chu L Y . Preparation of thermo-responsive gating membranes with controllable response temperature[J]. J. Membrane Sci., 2007, 289(1/2): 76-85. |
2 | Chen W L , Menzel M , Prucker O , et al . Morphology of nanostructured polymer brushes dependent on production and treatment[J]. Macromolecules, 2017, 50(12): 4715- 4724. |
3 | Emilsson G , Schoch R L , Oertle P , et al . Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes—evaluated with poly(N-isopropylacrylamide)[J]. Appl. Surf. Sci., 2017, 396: 384-392. |
4 | De Groot G W , Santonicola M G , Sugihara K , et al . Switching transport through nanopores with pH- responsive polymer brushes for controlled ion permeability[J]. ACS Appl. Mater. Interfaces, 2013, 5(4): 1400-1407. |
5 | Gajda M , Ulbricht M . Capillary pore membranes with grafted diblock copolymers showing reversibly changing ultrafiltration properties with independent response to ions and temperature[J]. J. Membrane Sci., 2016, 514: 510-517. |
6 | Zhai Q , Jiang H , Zhang X , et al . Smart modification of the single conical nanochannel to fabricate dual-responsive ion gate by self-initiated photografting and photopolymerization [J]. Talanta, 2016, 149: 280-284. |
7 | Friebe A , Ulbricht M . Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers[J]. Macromolecules, 2009, 42: 1838-1848. |
8 | Zhang L X , Cai S L , Zheng Y B , et al . Smart homopolymer modification to single glass conical nanopore channels: dual-stimuli-actuated highly efficient ion gating[J]. Adv. Funct. Mater., 2011, 21(11): 2103-2107. |
9 | Tagliazucchi M , Azzaroni O , Szleifer I . Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters[J]. |
Am J. . Chem. Soc., 2010, 132(35): 12404-12411. | |
10 | Barsbay M , Guven O . Grafting in confined spaces: functionalization of nanochannels of track-etched membranes [J]. Radiat. Phys. Chem., 2014, 105: 26-30. |
11 | Shibayama M . Volume phase transition and related phenomena of polymer gels[M]//Tanaka T. Responsive Gels: Volume Transitions I. Berlin Heidelberg: Springer, 1993:1-62. |
12 | Kieviet B D , Schon P M , Vancso G J . Stimulus-responsive polymers and other functional polymer surfaces as components in glass microfluidic channels[J]. Lab Chip, 2014, 14(21): 4159-4170. |
13 | Tokarev I , Minko S . Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors[J]. Adv. Mater., 2009, 21(2): 241-247. |
14 | Chu L Y , Li Y , Zhu J H , et al . Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery[J]. J. Control Release, 2004, 97(1): 43-53. |
15 | Lewis S R , Datta S , Gui M , et al . Reactive nanostructured membranes for water purification[J]. |
P.Natl . Acda. Sci. USA, 2011, 108(21): 8577-8582. | |
16 | Groot R D , Warren P B . Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation[J]. |
J. Chem. Phys., 1997, 107(11): 4423-4435. | |
17 | Groot R D . Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants[J]. J. Chem. Phys., 2003, 118(24): 11265-11277. |
18 | Gonzalez-Melchor M , Mayoral E , Velazquez M E , et al . Electrostatic interactions in dissipative particle dynamics using the Ewald sums[J]. |
J. Chem. Phys., 2006, 125(22): 224107. | |
19 | Mai J L , Sun D L , Quan X B , et al . Mesoscopic structure of nafion-ionic liquid membrane using dissipative particle dynamics simulations[J]. Acta Phys.-Chim. Sin., 2016, 32(7): 1649-1657. |
20 | Mai J L , Sun D L , Li L B , et al . Phase behavior of an amphiphilic block copolymer in ionic liquid: a dissipative particle dynamics study[J]. |
Chem J. . Eng. Data, 2016, 61(12): 3998-4005. | |
21 | Wang C , Quan X B , Liao M R , et al . Computer simulations on the channel membrane formation by nonsolvent induced phase separation[J]. Macromol. Theor. Simul., 2017, 26(5): 1700027. |
22 | 王莉, 王楚, 周健 . 耗散粒子动力学模拟嵌段聚合物刷修饰纳米孔的 pH 响应门控[J]. 高等学校化学学报, 2018, 39(1): 85-94. |
Wang L , Wang C , Zhou J . Dissipative particle dynamics simulations on the pH-responsive gating of block copolymer brush modified nanopores[J]. Chem. J. Chinese U., 2018, 39(1): 85-94. | |
23 | Byun H , Hong B , Nam S Y , et al . Swelling behavior and drug release of poly(vinyl alcohol) hydrogel cross-linked with poly(acrylic acid)[J]. Macromol. Res., 2008, 16(3): 189-193. |
24 | Posel Z , Svoboda M , Colina C M , et al . Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes: an insight from dissipative particle dynamics[J]. Soft Matter, 2017, 13(8): 1634-1645. |
25 | Groot R D , Madeen T J . Dynamic simulation of diblock copolymer microphase separation[J]. |
Phys J. . Chem. C, 1998, 108(20): 8713-8724. | |
26 | Groot R D , Rabone K L . Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants[J]. Biophys. J., 2001, 81(2): 725-736. |
27 | Min W F , Zhao D H , Quan X B , et al . Computer simulations on the pH-sensitive tri-block copolymer containing zwitterionic sulfobetaine as a novel anti-cancer drug carrier[J]. Colloids Surf. B Biointerfaces, 2017, 152: 260-268. |
28 | Luo T , Lin S , Xie R , et al . pH-responsive poly(ether sulfone) composite membranes blended with amphiphilic polystyrene-block-poly(acrylic acid) copolymers[J]. J. Membrane Sci., 2014, 450: 162-173. |
29 | 尤莉艳, 赵英, 王帅, 等 . 顶盖驱动流中胶束形态变化的耗散粒子动力学研究[J]. 高等学校化学学报, 2009, 30(9): 1784-1788. |
You L Y , Zhao Y , Wang S , et al . Morphology of linear diblock copolymer micelle under lid-driven flow[J]. Chem. J. Chinese U., 2009, 30(9): 1784-1788. | |
30 | 李延春, 刘鸿, 黄旭日, 等 . 均聚物链吸附在胶束表面上的非平衡态耗散粒子动力学[J]. 高等学校化学学报, 2011, 32(8): 1845-1848. |
Li Y C , Liu H , Huang X R , et al . Dissipative particle dynamics study of homopolymer adsorb on micelle in non-equilibrium state[J]. Chem. J. Chinese U., 2011, 32(8): 1845-1848. | |
31 | Guo H Y , Qiu X B , Zhou J . Self-assembled core-shell and janus microphase separated structures of polymer blends in aqueous solution[J]. |
J. Chem. Phys., 2013, 139(8): 084907. | |
32 | 郭泓雨, 崔洁铭, 孙德林, 等 . 温敏性两亲嵌段共聚物相行为的耗散粒子动力学模拟[J]. 化工学报, 2012, 63(11): 3707-3715. |
Guo H Y , Cui J M , Sun D L , et al . Dissipative particle dynamics simulation on phase behavior of thermo-responsive amphiphilic copolymer PCL-PNIPAM-PCL[J]. CIESC Journal, 2012, 63(11): 3707-3715. | |
33 | Seaton M A , Anderson R L , Metz S , et al . Dl_meso: highly scalable mesoscale simulations[J]. Mol. Simulat., 2013, 39(10): 796-821. |
34 | Su Y X , Quan X B , Li L B , et al . Computer simulation of DNA condensation by PAMAM dendrimer[J]. Macromol. Theor. Simul., 2018, 27(2): 1700070. |
35 | 苏运祥, 全学波, 闵文凤, 等 . PAMAM 树状大分子负载和释放阿霉素的耗散粒子动力学模拟[J]. 化工学报, 2017, 68(5): 1757-1766. |
Su Y X , Quan X B , Min W F , et al . Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers[J]. CIESC Journal, 2017, 68(5): 1757-1766. | |
36 | Sarkisov L , Harrison A . Computational structure characterisation tools in application to ordered and disordered porous materials[J]. Mol. Simulat., 2011, 37(15): 1248-1257. |
37 | Chu L Y , Xie R , Ju X J . Stimuli-responsive membranes: smart tools for controllable mass-transfer and separation processes[J]. Chin. |
J. Chem. Eng., 2011, 19(6): 891-903. | |
38 | Weidman J L , Mulvenna R A , Boudouris B W , et al . Unusually stable hysteresis in the pH-response of poly(acrylic acid) brushes confined within nanoporous block polymer thin films[J]. |
Am J. . Chem. Soc., 2016, 138(22): 7030-7039. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[4] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[5] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[6] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[7] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[8] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[9] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[10] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[11] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[12] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[13] | 龙臻, 王谨航, 何勇, 梁德青. 离子液体与动力学抑制剂作用下混合气体水合物生成特性研究[J]. 化工学报, 2023, 74(4): 1703-1711. |
[14] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[15] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||