化工学报 ›› 2019, Vol. 70 ›› Issue (1): 261-270.DOI: 10.11949/j.issn.0438-1157.20180567
张丽1(),王文武1(),张智恩2,刘培胜3,文江波4,董亮1
收稿日期:
2018-05-28
修回日期:
2018-10-10
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
王文武
作者简介:
张丽(1994—),女,硕士研究生,<email>zhanglili1229@hotmail.com</email>|王文武(1975—),男,硕士,讲师,<email>41116521@qq.com</email>
基金资助:
Li ZHANG1(),Wenwu WANG1(),Zhi’en ZHANG2,Peisheng LIU3,Jiangbo WEN4,Liang DONG1
Received:
2018-05-28
Revised:
2018-10-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Wenwu WANG
摘要:
针对余热回收和能源利用的问题,以液化天然气(LNG)作为冷源,稠油开采废气作为热源,提出了一种结合天然气液化和废气发电与CO2捕集的余热回收利用系统。分析了关键热力学参数对系统热力学性能的影响。结果表明:对于有机朗肯循环和制冷循环,增加透平膨胀机的进口温度,降低其出口压力以及减少制冷循环压缩机进出口的压缩比,可获得最大净输出功为454.9 kW,余热回收效率为34.2%。对于天然气液化系统,采用C++进行非线性约束优化计算,以氮膨胀制冷循环压缩机总功耗为目标函数进行优化,得到压缩机最优总功耗为101.54 kW。降低天然气压缩机(K110)进口温度,氮气膨胀机(T3)出口压力以及氮气质量流量,可获得最大LNG调峰量为378.8 kg/h,反之,CO2捕集量可提高28.6%。
中图分类号:
张丽, 王文武, 张智恩, 刘培胜, 文江波, 董亮. 一种天然气液化和CO2捕集相结合的余热回收发电系统[J]. 化工学报, 2019, 70(1): 261-270.
Li ZHANG, Wenwu WANG, Zhi’en ZHANG, Peisheng LIU, Jiangbo WEN, Liang DONG. A waste heat recovery power generation system combined with natural gas liquefaction and CO2 capture[J]. CIESC Journal, 2019, 70(1): 261-270.
Item | Value |
---|---|
exhaust gas inlet temperature/℃ | 260 |
exhaust gas inlet pressure/kPa | 110 |
mass flow rate of exhaust gas/(kg/h) | 20000 |
ambient temperature/℃ | 35 |
ambient pressure/kPa | 101 |
LNG inlet temperature/℃ | -162 |
LNG inlet pressure/kPa | 110 |
mass flow rate of LNG/(kg/h) | 15000 |
natural gas supply temperature/℃ | 10—20 |
amount of LNG liquefaction/(kg/h) | 10000 |
表1 系统基本参数
Table 1 Basic parameters of system
Item | Value |
---|---|
exhaust gas inlet temperature/℃ | 260 |
exhaust gas inlet pressure/kPa | 110 |
mass flow rate of exhaust gas/(kg/h) | 20000 |
ambient temperature/℃ | 35 |
ambient pressure/kPa | 101 |
LNG inlet temperature/℃ | -162 |
LNG inlet pressure/kPa | 110 |
mass flow rate of LNG/(kg/h) | 15000 |
natural gas supply temperature/℃ | 10—20 |
amount of LNG liquefaction/(kg/h) | 10000 |
Working fluid | Condensation temperature/℃ |
---|---|
R1150 | -102.7 |
R170 | -87.2 |
R32 | -50.1 |
R1270 | -46.2 |
R143a | -45.4 |
R290 | -40.3 |
R134a | -24.3 |
R152a | -22.7 |
表2 常见工质的冷凝温度(110 kPa)
Table 2 Condensation temperature of common working fluid (110 kPa)
Working fluid | Condensation temperature/℃ |
---|---|
R1150 | -102.7 |
R170 | -87.2 |
R32 | -50.1 |
R1270 | -46.2 |
R143a | -45.4 |
R290 | -40.3 |
R134a | -24.3 |
R152a | -22.7 |
Item | Pre-optimization results | Optimization results |
---|---|---|
compressor K112 outlet pressure/kPa | 900 | 909 |
compressor K112 inlet temperature/℃ | 20 | 18 |
compressor K113 outlet pressure/kPa | 1200 | 1172 |
compressor K114 outlet pressure/kPa | 1500 | 1500 |
compressor total power consumption/kW | 120 | 101.54 |
表3 氮膨胀制冷循环优化后的关键参数
Table 3 Key parameters of nitrogen expansion refrigeration circulation
Item | Pre-optimization results | Optimization results |
---|---|---|
compressor K112 outlet pressure/kPa | 900 | 909 |
compressor K112 inlet temperature/℃ | 20 | 18 |
compressor K113 outlet pressure/kPa | 1200 | 1172 |
compressor K114 outlet pressure/kPa | 1500 | 1500 |
compressor total power consumption/kW | 120 | 101.54 |
Item | Maximum value | Item | Maximum value | |
---|---|---|---|---|
net output power in SAGD/ORC | CO2 captured quantity | LNG used to peak regulation | ||
evaporation temperature/℃ | 190 | compressor K110 inlet temperature/℃ | -10 | -100 |
turbine 1 outlet pressure/kPa | 200 | compressor K110 outlet pressure/kPa | 360 | 360 |
compressor outlet pressure/kPa | 200 | turbine 5 outlet pressure/kPa | 700 | 110 |
net output power/kW | 454.9 | nitrogen mass flow rate/(kg/h) | 4000 | 1000 |
thermal efficiency/% | 36.6 | CO2 compressor outlet pressure/kPa | 600 | 600 |
exergy efficiency/% | 31.4 | LNG used to peak regulation/(kg/h) | 192.8 | 378.8 |
waste heat recovery efficiency/% | 34.2 | CO2 captured quantity/% | 75 | 46.4 |
ηcold in refrigeration cycle/% | 87.7 | net output power/kW | 29.1 | 267.5 |
表4 优化后整个系统的计算结果
Table 4 Optimal calculation results of the whole system
Item | Maximum value | Item | Maximum value | |
---|---|---|---|---|
net output power in SAGD/ORC | CO2 captured quantity | LNG used to peak regulation | ||
evaporation temperature/℃ | 190 | compressor K110 inlet temperature/℃ | -10 | -100 |
turbine 1 outlet pressure/kPa | 200 | compressor K110 outlet pressure/kPa | 360 | 360 |
compressor outlet pressure/kPa | 200 | turbine 5 outlet pressure/kPa | 700 | 110 |
net output power/kW | 454.9 | nitrogen mass flow rate/(kg/h) | 4000 | 1000 |
thermal efficiency/% | 36.6 | CO2 compressor outlet pressure/kPa | 600 | 600 |
exergy efficiency/% | 31.4 | LNG used to peak regulation/(kg/h) | 192.8 | 378.8 |
waste heat recovery efficiency/% | 34.2 | CO2 captured quantity/% | 75 | 46.4 |
ηcold in refrigeration cycle/% | 87.7 | net output power/kW | 29.1 | 267.5 |
1 | 杨文学, 杨科学, 童建翔, 等. 稠油储罐余热回收利用改造技术[J]. 石油技师, 2015: 197-199. |
YangW X, YangK X, TongJ X, et al. Heavy oil storage tank waste heat recovery and utilization technology[J]. Oil Technician, 2015: 197-199. | |
2 | XiaoZ Z, WangS Z, YangJ P. Research on recovering waste heat from liquid produced in heavy oil exploitation by SAGD technology[J]. Advanced Materials Research, 2014, 960/961: 410-413. |
3 | WangB, ChengQ L, SunW, et al. Application of heat pump technology in waste heat recovery of oilfield sewage[J]. Contemporary Chemical Industry, 2015, 8(10): 34-44. |
4 | WangX. Application of high-temperature water source heat pump units in the waste heat recovery and utilization of waste water in the oilfield[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2017, 158(20): 60-70. |
5 | ZhuY. Promoting the utilization of sewage waste heat in the oilfield with boo management mode[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2017, 112(3): 8-15. |
6 | SrinivasanK K, MagoP J, KrishnanS R. Analysis of exhaust waste heat recovery from a dual fuel low temperature combustion engine using an organic Rankine cycle[J]. Energy, 2010, 35(6): 2387-2399. |
7 | 杨凯, 张红光, 宋松松, 等. 变工况下车用柴油机排气余热有机朗肯循环回收系统[J]. 化工学报, 2015, 66(3): 1097-1103. |
YangK, ZhangH G, SongS S, et al. Waste heat organic Rankine cycle of vehicle diesel engine under variable working conditions[J]. CIESC Journal, 2015, 66(3): 1097-1103. | |
8 | MagoP J, LuckR. Energetic and exergetic analysis of waste heat recovery from a microturbine using organic Rankine cycles[J]. International Journal of Energy Research, 2013, 37(8): 888-898. |
9 | PanZ, ZhangL, ZhangZ, et al. Thermodynamic analysis of KCS/ORC integrated power generation system with LNG cold energy exploitation and CO2 capture[J]. Journal of Natural Gas Science & Engineering, 2017, 46(8): 188-198. |
10 | 田华, 井东湛, 王轩, 等. 基于内燃机余热回收联产系统变工况特性分析[J]. 化工学报, 2018, 69(2): 792-800. |
TianH, JingD Z, WangX, et al. Part-load performance analysis of cogeneration system for engine waste heat recovery[J]. CIESC Journal, 2018, 69(2): 792-800. | |
11 | 仇阳, 潘振, 李萍, 等. 一种发电和天然气再液化相结合的LNG冷能利用系统[J]. 化工学报, 2017, 68(9): 3580-3591. |
QiuY, PanZ, LiP, et al. An LNG cold energy utilization system combined with power generation and natural gas re-liquefaction[J]. CIESC Journal, 2017, 68(9): 3580-3591. | |
12 | 常学煜, 张盈盈, 朱建鲁, 等. 一种蒸发天然气再液化氮膨胀制冷工艺流程的优化和海上适应性分析[J]. 化工进展, 2017, 36(5): 1619-1627. |
ChangX Y, ZhangY Y, ZhuJ L, et al. Optimization of the process of nitrogen expansion refrigeration of BOG and the analysis of the adaptability of the sea[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1619-1627. | |
13 | RaziM, SinhaS, WaghmareP R, et al. Effect of steam-assisted gravity drainage (SAGD) produced water properties on oil/water transient interfacial tension[J]. Energy & Fuels, 2016, 156(34): 324-330. |
14 | AshrafiO, NavarriP, HughesR, et al. Heat recovery optimization in a steam-assisted gravity drainage (SAGD) plant[J]. Energy, 2016, 111(20): 981-990. |
15 | LiP, LiJ, PeiG, et al. A cascade organic Rankine cycle power generation system using hybrid solar energy and liquefied natural gas[J]. Solar Energy, 2016, 127(8): 136-146. |
16 | GuoC, DuX, YangL, et al. Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator[J]. Applied Thermal Engineering, 2014, 62(1): 176-186. |
17 | YuH, FengX, WangY. A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (organic Rankine cycle) recovering waste heat[J]. Energy, 2015, 90: 36-46. |
18 | 翁一武. 低品位热能转换过程及利用[M]. 上海: 上海交通大学出版社, 2014. |
WenY W. Conversion Process and Utilization of Low Grade Heat Energy[M]. Shanghai : Shanghai Jiao Tong University Press, 2014. | |
19 | CimsitC, OzturkI T, KincayO. Thermoeconomic optimization of LiBr/H2O-R134a compression-absorption cascade refrigeration cycle[J]. Applied Thermal Engineering, 2015, 76: 105-115. |
20 | ZegenhagenT, ZieglerF. Experimental investigation of the characteristics of a jet-ejector and a jet-ejector cooling system operating with R134a as a refrigerant[J]. International Journal of Refrigeration, 2015, 56: 173-185. |
21 | WangH, ShiX, CheD. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Applied Thermal Engineering, 2013, 59(8): 490-497. |
22 | AaliA, PourmahmoudN, ZareV. Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran[J]. Energy Conversion & Management, 2017, 143(57): 377-390. |
23 | ZhaoY, WangJ. Exergoeconomic analysis and optimization of a flash-binary geothermal power system[J]. Applied Energy, 2016, 179(46): 159-170. |
24 | WangJ, WangJ, DaiY, et al. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system[J]. Geothermics, 2015, 55(10): 69-77. |
25 | BassyouniM, HasanS W U, AbdelazizM H, et al. Date palm waste gasification in downdraft gasifier and simulation using ASPEN HYSYS[J]. Energy Conversion & Management, 2014, 88(7): 693-699. |
26 | SunnyA, SolomonP A, AparnaK. Syngas production from re-gasified liquefied natural gas and its simulation using Aspen HYSYS[J]. Journal of Natural Gas Science & Engineering, 2016, 30(2): 176-181. |
27 | ZhangN, LiorN, LiuM, et al. COOLCEP (cool clean efficient power): a novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization[J]. Energy, 2010, 35(2): 1200-1210. |
28 | WangJ, WangJ, DaiY, et al. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system[J]. Geothermics, 2015, 55(3): 69-77. |
29 | ShahN M, RangaiahG P, HoadleyA F A. Multi-objective optimization of multi-stage gas-phase refrigeration systems[M]// Multi-Objective Optimization: Techniques and Applications in Chemical Engineering (With CD-ROM). World Scientific,2009: 237-276. |
30 | SongR, CuiM, LiuJ. Single and multiple objective optimization of a natural gas liquefaction process[J]. Energy, 2017, 124(4): 19-28. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[7] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[8] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[9] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[15] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||