化工学报 ›› 2019, Vol. 70 ›› Issue (1): 179-188.DOI: 10.11949/j.issn.0438-1157.20180784

• 生物化学工程与技术 • 上一篇    下一篇

产蒎烯人工酵母细胞的构建

陈天华1,2(),张若思1,2,姜国珍1,2,姚明东1,2,刘宏1,2,王颖1,2(),肖文海1,2,元英进1,2   

  1. 1. 天津大学系统生物工程教育部重点实验室,天津 300072
    2. 天津化学化工协同创新中心合成生物学平台,天津 300072
  • 收稿日期:2018-07-11 修回日期:2018-09-09 出版日期:2019-01-05 发布日期:2019-01-05
  • 通讯作者: 王颖
  • 作者简介:陈天华(1993—),女,硕士研究生,<email>13102217875@163.com</email>|王颖(1983—),女,副研究员,<email>ying.wang@tju.edu.cn</email>
  • 基金资助:
    国家自然科学基金面上项目(21621004, 21676192)

Metabolic engineering of Saccharomyces cerevisiae for pinene production

Tianhua CHEN1,2(),Ruosi ZHANG1,2,Guozhen JIANG1,2,Mingdong YAO1,2,Hong LIU1,2,Ying WANG1,2(),Wenhai XIAO1,2,Yingjin YUAN1,2   

  1. 1. Key Laboratory of Systems Bioengineering Ministry of Education, Tianjin University, Tianjin 300072, China
    2. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received:2018-07-11 Revised:2018-09-09 Online:2019-01-05 Published:2019-01-05
  • Contact: Ying WANG

摘要:

蒎烯可衍生为高能量密度燃料,但在酿酒酵母中的全生物合成却未见报道。酿酒酵母由于拥有强大的蛋白表达和翻译后修饰系统以及完整的内膜系统,相比于大肠杆菌等原核生物更适于P450等蛋白的表达,因此将酿酒酵母作为宿主细胞,对于蒎烯或者其他物质实现如“疯狂碳环”的高能量化是至关重要的。本研究在酿酒酵母底盘中表达内源焦磷酸香叶酯合成酶(ERG20)的突变体ERG20ww和火炬松来源的蒎烯合酶(PtPS)构建了蒎烯的合成路径。通过截短PtPS N端2~51位氨基酸残基(tPtPS),蒎烯产量较初始产量(0.329 mg·L-1)提高了2.23倍。在过表达异戊二烯焦磷酸异构酶(IDI1)和RNA聚合酶Ш负调控因子(MAF1)的基础上,表达ERG20ww和tPtPS的融合蛋白,蒎烯产量进一步提高了5.16倍。通过将内源基因ERG20启动子原位替换为弱启动子HXT1,下调ERG20的转录,蒎烯的产量提高了26.0%。最终通过调节发酵过程中的培养基pH使蒎烯产量达11.7 mg·L-1,较初始产量提高了34.5倍。本研究在酿酒酵母中实现蒎烯的从头合成,并获得已知蒎烯摇瓶水平的最高产量。

关键词: 代谢工程, 合成生物学, 蒎烯, 酿酒酵母

Abstract:

The derivatives of pinene can be employed as high energy density fuels. However, the biosynthesis of pinene from single carbon sources has not been realized in yeast. As Saccharomyces cerevisiae has stronger ability on protein expression and post-translational modification as well as processes a maturity endomembrane system, it is more suitable for expressing complex proteins (e.g. cytochrome P450) by yeast than by prokaryotic hosts such as Escherichia coli. Therefore, it is crucial to engineer S. cerevisiae as the host cell to produce high energy density fuels (like “Crazy Carbon Ring”) based on the derivatization of pinene or other terpenes compounds. Here, in order to achieve pinene synthesis in yeast, endogenous farnesyl diphosphate synthase (ERG20) mutant ERG20ww and Pinus taeda pinene synthase (PtPS) were expressed in Saccharomyces cerevisiae strain, obtaining an initial pinene titer of 0.329 mg·L-1. N-terminus truncation (from 2A to 51P) of PtPS (obtaining tPtPS) improve the pinene production by 2.23-fold. The pinene titer was further enhanced by 5.16-fold by expression the fusion of ERG20ww/tPtPS on the basis of overexpression of isoprene pyrophosphate isomerase (IDI1) and the repressor of RNA polymerase III (MAF1). Replacing the promoter of gene ERG20 by a weaker promoter HXT1 down-regulated the transcription of ERG20. And correspondingly the pinene output was increased by 26.0%. Eventually, adjusting the pH of the fermentat-ion medium further increased the pinene production by 42.2% (to 11.7 mg·L-1). This titer was 34.5-fold higher than the initial one. This study is the first to achieve de novo synthesis of terpenes in Saccharomyces cerevisiae and to obtain the highest yield of known terpene shake flasks.

Key words: metabolic engineering, synthetic biology, pinene, Saccharomyces cerevisiae

中图分类号: