化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1550-1558.DOI: 10.11949/j.issn.0438-1157.20181333
收稿日期:
2018-11-15
修回日期:
2018-12-08
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
巩有奎
作者简介:
及第一作者:巩有奎(1977—),男,博士,副教授,<email>260943813@qq.com</email>
基金资助:
Youkui GONG1,2(),Lifang REN1,Yongzhen PENG2
Received:
2018-11-15
Revised:
2018-12-08
Online:
2019-04-05
Published:
2019-04-05
Contact:
Youkui GONG
摘要:
在(20±2.0)℃ 条件下,以实际生活污水为处理对象,以碳纤维为填料(填充率35%),利用序批式生物膜(sequencing batch biofilm reactor,SBBR)反应器,通过限氧曝气,成功实现了亚硝酸型同步生物脱氮(simultaneous nitrification and denitrification,SND)过程。荧光原位杂交技术(fluorescence in-situ hybridization,FISH)半定量表明,氨氧化菌(ammonia oxidizing bacteria, AOB)是硝化系统中的优势菌种。微生物将外碳源以聚β–羟基烷酸酯(poly-β-hydroxyalkanoate,PHA)的形式储存在体内,作为后续反硝化过程所需内碳源。DO=0.5 mg/L,SBBR系统NH4 +-N和TN去除率分别为95%以上和80.4%,SND效率达77.9%。出水NO x --N小于10 mg/L,且以NO2 --N为主。DO=2.0、1.2和0.5 mg/L时,系统N2O释放量分别为1.38、2.39和1.65 mg/L。AOB的好氧反硝化过程和低氧条件下以PHA作为内碳源的NO x --N反硝化过程,都会导致N2O释放。低DO水平是实现亚硝酸型同步脱氮过程和降低N2O释放的关键因素。低DO促进了AOB的竞争优势,形成了良好的缺氧微环境,降低了COD降解速率,为反硝化过程提供外碳源作为电子供体,从而降低了N2O释放量。
中图分类号:
巩有奎, 任丽芳, 彭永臻. 不同DO下SBBR亚硝酸型同步脱氮及N2O释放特性[J]. 化工学报, 2019, 70(4): 1550-1558.
Youkui GONG, Lifang REN, Yongzhen PENG. Characteristics of simultaneous nitrification and denitrification via nitrite and N2O emission in SBBR under different DO concentrations[J]. CIESC Journal, 2019, 70(4): 1550-1558.
编号 | 添加抑制剂 | 实验目的 | 比耗氧速率(SOUR) |
---|---|---|---|
1 | — | 测定SBBR系统微生物总SOUR | SOUR1 |
2 | ATU | 抑制AOB活性 | SOUR2 |
3 | NaClO3 | 抑制NOB活性 | SOUR3 |
4 | ATU+ NaClO3 | 同时抑制AOB和NOB的活性 | SOUR4 |
表1 不同菌群比耗氧速率(SOUR)试验过程[18]
Table 1 Process of SOUR for different bacteria
编号 | 添加抑制剂 | 实验目的 | 比耗氧速率(SOUR) |
---|---|---|---|
1 | — | 测定SBBR系统微生物总SOUR | SOUR1 |
2 | ATU | 抑制AOB活性 | SOUR2 |
3 | NaClO3 | 抑制NOB活性 | SOUR3 |
4 | ATU+ NaClO3 | 同时抑制AOB和NOB的活性 | SOUR4 |
图6 不同DO下典型周期SBBR反应器NH4 +-N,NO2 --N,NO3 --N,N2O-N和TN变化曲线
Fig.6 Variation of NH4 +-N, NO2 --N, NO3 --N, N2O-N and TN concentrations in typical operational cycles of SBBR under different DO concentrations
1 | Wang J , Rong H , Zhang C . Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor[J]. Journal of Bioscience and Bioengineering, 2018, 125(5): 532-542. |
2 | Zhao J , Feng L , Yang G , et al . Development of simultaneous nitrification- denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243: 800-809. |
3 | Han Y , Liu J , Guo X , et al . Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size[J]. Bioresource Technology, 2012, 124(11): 252-258. |
4 | Ma W , Han Y , Ma W , et al . Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 44(11): 84-91. |
5 | Leonidia M C D , Eloisa P , Eugenio F , et al . Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor[J]. Bioresource Technology, 2009, 100(3): 1100-1107. |
6 |
Stefano M , Giaime T , Giovannimatteo E . Evaluation of nitrous oxide gaseous emissions from a partial nitritation reactor operating under different conditions[J]. Desalination and Water Treatment, 2018, DOI: 10.5004/dwt.2018.22934.
DOI URL |
7 | Wen Q , Chen Z , Shi H . T-RFLP detection of nitrifying bacteria in a fluidized bed reactor of achieving simultaneous nitrification- denitrification.[J]. Chemosphere, 2008, 71(9): 1683-1692. |
8 | Solomon S , Qin D , Manning M , et al . Climate Change 2007: the Physical Science Basis[M]. Cambridge: Cambridge University Press, 2007. |
9 | Ravishankara A R , Daniel J S , Portmann R W . Nitrous oxide(N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
10 | Kong Q , Wang Z , Niu P , et al . Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210: 94-100. |
11 | Ye L , Ni B J , Law Y Y , et al . A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48(1): 257-268. |
12 | 巩有奎, 王赛, 彭永臻, 等 . 生活污水不同生物脱氮过程中N2O产量及控制[J]. 化工学报, 2010, 61(5): 1286-1292. |
Gong Y K , Wang S , Peng Y Z , et al . Formation of N2O in various biological nitrogen removal processes for treatment of domestic sewage[J]. CIESC Journal, 2010, 61(5): 1286-1292. | |
13 | APHA(American Public Health Association) . Standard methods for the examination of water and wastewater[S]. Baltimore: Port City Press, 1998. |
14 | Oehmen A , Keller-Lehmann B , Zeng R J , et al . Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems [J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136. |
15 | 张建华, 彭永臻, 张淼, 等 .同步硝化反硝化SBBR 处理低C/N 比生活污水的启动与稳定运行[J].化工学报, 2016, 67(11): 4817-4824. |
Zhang J H , Peng Y Z , Zhang M , et al . Start-up and steady operation of simultaneous nitrification and denitrification in SBBR treating low C/N ratio domestic wastewater[J]. CIESC Journal, 2016, 67(11): 4817-4824. | |
16 | 曾薇, 杨庆, 张树军, 等 . 采用 FISH、DGGE 和 Cloning 对短程脱氮系统中硝化菌群的比较分析[J]. 环境科学学报, 2006, 26(5): 734-739. |
Zeng W , Yang Q , Zhang S J , et al . Analysis of nitrifying bacteria in short-cut nitrification- denitrification processes by using FISH, PCR-DGGE and Cloning[J]. Acta Scientiae Circumstantiae, 2006, 26(5): 734-739. | |
17 | 王建龙, 吴立波, 齐星, 等 . 用氧吸收速率( OUR) 表征活性污泥硝化活性的研究[J]. 环境科学学报, 1999, 19(3): 225-229. |
Wang J L , Wu L B , Qi X , et al . Characterization of nitrification activity of activated sludge by oxygen uptake rate (OUR) [J]. Acta Scientiae Circumstantiae, 1999, 19(3): 225-229. | |
18 | 巩有奎, 苗志加, 彭永臻 .生物脱氮好氧阶段不同反应过程N2O产量[J].环境工程学报, 2016, 12(12): 6963-6968. |
Gong Y K , Miao Z J , Peng Y Z . Nitrous oxide production from sequencing batch reactor sludge under nitrifying conditions of different process[J]. Chinese Journal of Environmental Engineering, 2016, 12(12): 6963-6968. | |
19 | Yilmaz G , Lemaire R , Keller J , et al . Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge[J]. Biotechnol. Bioeng., 2008, 100(3): 529-541. |
20 | Rikke L M , Zeng R L , Giugliano V , et al . Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: mass transfer limitation and nitrous oxide production[J]. FEMS Microbiology Ecology, 2005, 52(3): 329-338. |
21 | Guisasola A , Jubany I , Baeza J A , et al . Respirometric estimation of the oxygen affinity constants for biological ammonia and nitrite oxidation[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(4): 388-396. |
22 |
Soliman M , Eldyasti A . Ammonia-oxidizing bacteria (AOB): opportunities and applications—a review[J]. Reviews in Environmental Science and Bio/Technology, 2018, DOI: 10.1007/s11157-018-9463-4.
DOI URL |
23 | Bernet N , Dangcong P , Delgenes J P , et al . Nitrification at low oxygen concentration in biofilm reactor [J]. Journal of Environmental Engineering-ASCE, 2001, 127 (3): 266-271. |
24 | Laanbroek H J , Gerards S . Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures [J]. Archives of Microbiology, 1993, 159(5): 453-459. |
25 | 曾薇, 张悦, 李磊 . 限氧曝气实现亚硝酸型同步硝化反硝化的研究[J]. 北京工业大学学报, 2010, 36(9): 1263-1270. |
Zeng W , Zhang Y , Li L . Simultaneous nitrification denitrification via nitrite under limited aeration[J]. Journal of Beijing University of Technology, 2010, 36(9): 1263-1270. | |
26 | Law Y , Ye L , Pan Y , et al . Nitrous oxide emissions from wastewater treatment processes [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1593): 1265-1277. |
27 | Yang Q , Liu X H , Peng C Y , et al . N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406. |
28 | Pan Y T , Ni B J , Yuan Z G . Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification[J]. Environmental Science & Technology, 2013, 47(19): 11083-11091. |
29 | 巩有奎, 王淑莹, 王莎莎 . 碳氮比对短程反硝化过程中N2O产生的影响[J].化工学报, 2011, 62(7): 2049-2054. |
Gong Y K , Wang S Y , Wang S S . Effect of C/N ratio on N2O accumulation and reduction during nitrite denitrification process[J]. CIESC Journal, 2011, 62(7): 2049-2054. | |
30 | Pan Y T , Ye L , Ni J B , et al . Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers[J]. Water Research, 2012, 46(15): 4832-4840. |
31 | Zhao W , Wang Y , Liu S , et al . Denitrification activities and N2O production under salt stress with varying CODN ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 215/216(2): 252-260. |
32 | Gong Y , Peng Y , Yang Y . Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate[J]. Journal of Hazardous Materials, 2012, 227/228: 453-460. |
33 | Pan Y , Ni B , Lu H , et al . Evaluating two concepts for the modelling of intermediates accumulation during biological denitrification in wastewater treatment[J]. Water Research, 2015, 71(15): 21-31. |
34 | Chen X , Yuan Z , Ni B J . Nitrite accumulation inside sludge flocs significantly influencing nitrous oxide production by ammonium-oxidizing bacteria[J]. Water Research, 2018, 143(15): 99-108. |
35 | 郑桂林, 张朝升, 曹勇锋, 等 . DO在SBBR生物膜中传递及对同步硝化反硝化的影响[J]. 中国给水排水, 2016, 32(3): 22-26. |
Zheng G L , Zhang C S , Cao Y F , et al . Transfer of DO in biofilm and effect of DO on simultaneous nitrification and denitrification in sequencing batch biofilm reactor [J]. China Water&Wastewater, 2016, 32(3): 22-26. |
[1] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[2] | 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
[3] | 巩有奎, 罗佩云, 孙洪伟. 厌氧-限氧SBR处理低C/N生活污水SNDPR启动及N2O释放[J]. 化工学报, 2021, 72(8): 4381-4390. |
[4] | 徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332. |
[5] | 巩有奎, 彭永臻. 运行方式对SBBR亚硝酸型同步脱氮及N2O释放的影响[J]. 化工学报, 2019, 70(6): 2289-2297. |
[6] | 马双忱, 范紫瑄, 万忠诚, 陈嘉宁, 张净瑞, 马采妮. 高盐水条件下亚硫酸盐氧化特性实验研究[J]. 化工学报, 2019, 70(5): 1964-1972. |
[7] | 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化[J]. 化工学报, 2019, 70(12): 4847-4855. |
[8] | 巩有奎, 彭永臻. 曝气强度对SBBR同步生物脱氮及N2O释放影响[J]. 化工学报, 2019, 70(11): 4410-4419. |
[9] | 仇媛, 王长真, 李海涛, 胡晓波, 王永钊, 赵永祥. 单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能[J]. 化工学报, 2018, 69(4): 1493-1499. |
[10] | 韩红桂, 刘峥, 乔俊飞. 基于区间二型模糊神经网络污水处理过程溶解氧浓度控制[J]. 化工学报, 2018, 69(3): 1182-1190. |
[11] | 周红标. 基于自组织模糊神经网络的污水处理过程溶解氧控制[J]. 化工学报, 2017, 68(4): 1516-1524. |
[12] | 张倩, 王淑莹, 苗圆圆, 王晓霞, 彭永臻. 间歇低氧曝气下CANON工艺处理生活污水的启动[J]. 化工学报, 2017, 68(1): 289-296. |
[13] | 余岳溪, 高正阳, 季鹏, 李方勇, 杨维结. 煤焦异相还原N2O的反应机理[J]. 化工学报, 2017, 68(1): 369-374. |
[14] | 谢丽, 殷紫, 尹志轩, 王悦超, 周琪. 一段式厌氧氨氧化工艺亚硝酸盐氧化菌抑制方法研究进展[J]. 化工学报, 2016, 67(7): 2647-2655. |
[15] | 崔有为, 林小媛, 冀思远, 施云鹏. SRT对富集高聚PHA能力嗜盐MMC的影响[J]. 化工学报, 2016, 67(6): 2575-2582. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 530
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||