1 |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2017.
|
|
National Bureau of Statistics of the People s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2017.
|
2 |
刘慧敏, 王春波, 张月, 等. 温度和赋存形态对燃煤过程中砷迁移和释放的影响[J]. 化工学报, 2015, 66(11): 4643-4651.
|
|
LiuH M, WangC B, ZhangY, et al. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion[J]. CIESC Journal, 2015, 66(11): 4643-4651.
|
3 |
周劲松, 齐攀, 侯文慧, 等. 纳米氧化锌在模拟煤气下吸附单质汞的实验研究[J]. 燃料化学学报, 2013, 41(11): 1371-1377.
|
|
ZhouJ S, QiP, HouW H, et al. Elemental mercury removal from syngas by nano-ZnO sorbent[J]. Journal of Fuel Chemistry and Technology, 2013, 41(11): 1371-1377.
|
4 |
郭瑞霞, 杨建丽, 刘东艳, 等. 热处理条件对大同煤中微量有害元素变迁规律的影响[J]. 化工学报, 2003, 54(11): 1603-1607.
|
|
GuoR X, YangJ L, LiuD Y, et al. Influence of thermal of treatment conditions on transformation of trace elements in Datong coal[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(11): 1603-1607.
|
5 |
魏绍青, 滕阳, 李晓航, 等. 300 MW等级燃煤机组煤粉炉与循环流化床锅炉汞排放特性比较[J]. 燃料化学学报, 2017, 45(8): 1009-1016.
|
|
WeiS Q, TengY, LiX H, et al. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. Journal of Fuel Chemistry and Technology, 2017, 45(8): 1009-1016.
|
6 |
ZhaoH T, YangG, GaoX, et al. Hg0-temperature-programmed surface reaction and its application on the investigation of metal oxides for Hg0 capture[J]. Fuel, 2016, 181: 1089-1094.
|
7 |
ZhuY C, HanX J, HuangZ G, et al. Superior activity of CeO2 modified V2O5/AC catalyst for mercury removal at low temperature[J]. Chemical Engineering Journal, 2018, 337: 741-749.
|
8 |
李洋, 陈敏东, 薛志钢, 等. 燃煤电厂协同脱汞研究进展及强化措施[J]. 化工进展, 2014, 33(8): 2187-2191.
|
|
LiY, ChenM D, XueZ G, et al. Research on synergistic mercury removal of coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2187-2191.
|
9 |
ChengC M, CaoY, ZhangK, et al. Co-effects of sulfur dioxide load and oxidation air on mercury re-emission in forced-oxidation limestone flue gas desulfurization wet scrubber[J]. Fuel, 2013, 106: 505-511.
|
10 |
GeraldH L, JaisenN K, RoeH Y. An evaluation of coal preparation technologies for controlling trace element emissions[J]. Fuel Processing Technology, 2000, 60(3): 407-422.
|
11 |
LopezA A M, DiazS M, GarciaA B, et al. Evaluation of mercury associations in two coals of different rank using physical separation procedures[J]. Fuel, 2006, 85(10): 1389-1395.
|
12 |
DiehlS F, GoldhaberM B, HatchJ R. Modes of occurrence of mercury and other trace elements in coals from the warrior field, Black Warrior Basin, Northwestern Alabama[J]. Journal of Coal Geology, 2004, 59(3): 193-208.
|
13 |
MichaelE B, RonaldH A, JamesD C, et al. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No.1 mine, King County, Washington, USA[J]. International Journal of Coal Geology, 2005, 63(3/4): 247-275.
|
14 |
罗小雨, 苏胜, 向军, 等. 汞在MnOx-CeO2/γ-Al2O3催化剂表面的赋存形态分析[J]. 化工学报, 2015, 66(6): 2082-2088.
|
|
LuoX Y, SuS, XiangJ, et al. Speciation of mercury formed on MnOx-CeO2/γ-Al2O3 catalyst surface[J]. CIESC Journal, 2015, 66(6): 2082-2088.
|
15 |
RumayorM, GsllegoJ R, RodriguezV E, et al. An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption[J]. Journal of Hazardous Materials, 2017, 325: 1-7.
|
16 |
FengX B, LuJ Y, GregoireD C, et al. Analysis of inorganic mercury species associated with airborne particulate matter/aerosols: method development[J]. Analytical and Bioanalytical Chemistry, 2004, 380(4): 683-689.
|
17 |
HaraldB, StefanoC, StefanoC. Mercury speciation in sediments affected by dumped mining residues in the drainage area of the Idrija mercury mine[J]. Environment Science Technology, 2000, 34(6): 2330-2336.
|
18 |
StrezovV, EvansT J, ZiolkowskiA, et al. Mode of occurrence and thermal stability of mercury in coal[J]. Energy and Fuels, 2010, 24(1): 53-57.
|
19 |
UruskiL, GoreckiJ, MacherzynskiM, et al. The ability of Polish coals to release mercury in the process of thermal treatment[J]. Fuel Processing Technology, 2015, 140: 12-20.
|
20 |
ZhengL G, LiuG J, QiC C, et al. The use of sequential extraction to determine the distribution and modes of occurrence of mercury in Permian Huaibei coal, Anhui Province, China[J]. International Journal of Coal Geology, 2008, 73(2): 139-155.
|
21 |
Method 29 — Determination of Metals Emissions from Stationary Sources[S]. United States: United States Environmental Protection Agency, 2009.
|
22 |
TessierP, BissonM. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
|
23 |
PalmerC A, MroczkowskiS J, FinkelmanR B, et al. The use of sequential leaching to quantify the modes of occurrence of elements in coal[C]// Pittsburgh Coal Conference. Pittsburgh, PA, United States, 1998.
|
24 |
PanyametheekulS. An operationally defined method to determine the speciation of mercury[J]. Environmental Geochemistry and Health, 2004, 26(1): 51-57.
|
25 |
LopezA A M, YuanY, PerryR, et al. Analysis of mercury species present during coal combustion by thermal desorption[J]. Fuel, 2010, 89(3): 629-634.
|
26 |
LuoG Q, YaoH, XuM H, et al. Identifying modes of occurrence of mercury in coal by temperature programmed pyrolysis[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2763-2769.
|
27 |
郭少青, 杨建丽, 刘振宇. 晋城煤中汞的热稳定性与赋存形态的研究[J]. 燃料化学学报, 2009, 37(1): 115-118.
|
|
GuoS Q, YangJ L, LiuZ Y. Thermal stability and occurrence of forms of mercury in Jincheng coal[J]. Journal of Fuel Chemistry and Technology, 2009, 37(1): 115-118.
|
28 |
赵峰华. 煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究[D]. 北京: 中国矿业大学, 1997.
|
|
ZhaoF H. Study on the mechanism of distributions and occurrences of hazardous minor and trace elements in coal and leaching experiments of coal combustion residues[D]. Beijing: China University of Mining & Technology, 1997.
|
29 |
吴辉. 燃煤汞释放及转化的实验与机理研究[D]. 武汉: 华中科技大学, 2011.
|
|
WuH. Experimental and mechanism study on mercury emission and transformation during coal combustion[D]. Wuhan: Huazhong University of Science & Technology, 2011.
|
30 |
CláudiaC W, RolfD W, WilsonD F. Mercury speciation in contaminated soils by thermal release analysis[J]. Water, Air and Soil Pollution, 1996, 89: 399-416.
|
31 |
FinkelmanR B. Modes of occurrence of potentially hazardous elements in coal: levels of confidence[J]. Fuel Processing Technology, 1994, 39(1/2/3): 21-34.
|