1 |
HarrisT J. Assessment of control loop performance [J]. Canadian Journal of Chemical Engineering, 1989, 67(5): 856-861.
|
2 |
HarrisT J, BoudreauF, MacgregorJ F. Performance assessment of multivariable feedback controllers [J]. Automatica, 1996, 32(11): 1505-1518.
|
3 |
HuangB, KwokE K, ShahS L. Good, bad or optimal? Performance assessment of multivariable processes [J]. Automatica, 1997, 33(6): 1175-1183.
|
4 |
HuangB, ShahS L. Practical issues in multivariable feedback control performance assessment [J]. Journal of Process Control, 1997, 8(5): 421-430.
|
5 |
HuangB, DingS X, ThornhillN. Practical solutions to multivariate feedback control performance assessment problem: reduced a-priori knowledge of interactor matrix [J]. Journal of Process Control, 2005, 15(5): 573-583.
|
6 |
HuangB, DingS X, ThornhillN. Alternative solutions to multi-variate control performance assessment problems [J]. Journal of Process Control, 2006, 16(5): 457-471.
|
7 |
YuJ, QinS J. Statistical MIMO controller performance monitoring(Ⅰ): Data-driven covariance benchmark [J]. Journal of Process Control, 2008, 18(3): 277-296.
|
8 |
YuJ, QinS J. Statistical MIMO controller performance monitoring(Ⅱ): Performance diagnosis [J]. Journal of Process Control, 2008, 18(3): 297-319.
|
9 |
QinS J. Survey on data-driven industrial process monitoring and diagnosis [J]. Annual Reviews in Control, 2012, 36(2): 220-234.
|
10 |
赵春晖, 王福利, 姚远, 等. 基于时段的间歇过程统计建模、在线监测及质量预报[J]. 自动化学报, 2010, 36(3): 366-374.
|
|
ZhaoC H, WangF L, YaoY, et al. Phase-based statistical modeling, online monitoring and quality prediction for batch processes [J]. Acta Automatica Sinica, 2010, 36(3): 366-374.
|
11 |
YanL, WangF, ChangY. Online fuzzy assessment of operating performance and cause identification of nonoptimal grades for industrial processes [J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 18022-18030.
|
12 |
LiuY, ChangY, WangF. Online process operating performance assessment and nonoptimal cause identification for industrial processes [J]. Journal of Process Control, 2014, 24(10): 1548-1555.
|
13 |
LiuY, WangF, ChangY. Operating optimality assessment based on optimality related variations and nonoptimal cause identification for industrial processes[J]. Journal of Process Control, 2016, 39: 11-20.
|
14 |
ZhaoC, GaoF, NiuD, et al. A two-step basis vector extraction strategy for multiset variable correlation analysis [J]. Chemometrics & Intelligent Laboratory Systems, 2011, 107(1): 147-154.
|
15 |
LiuY, ChangY, WangF. Online process operating performance assessment and nonoptimal cause identification for industrial processes [J]. Journal of Process Control, 2014, 24(10): 1548-1555.
|
16 |
LiG, QinS J, ZhouD. Geometric properties of partial least squares for process monitoring[J]. Automatica, 2010, 46(1): 204-210.
|
17 |
ZhouD H, LiG, QinS J. Total projection to latent structures for process monitoring [J]. AIChE Journal, 2010, 56(1): 168-178.
|
18 |
赵小强, 薛永飞. 基于核 T-PLS 的化工过程故障检测算法[J]. 化工学报, 2013, 64(12): 4608-4614.
|
|
ZhaoX Q, XueY F. Fault detection algorithm for chemical process based on kernel T-PLS[J]. CIESC Journal, 2013, 64(12): 4608-4614.
|
19 |
LiuY, ChangY, WangF. Nonlinear dynamic quality-related process monitoring based on dynamic total kernel PLS [C]//Intelligent Control and Automation. IEEE, 2015: 1360-1365.
|
20 |
KanekoH, FunatsuK. Ensemble locally weighted partial least squares as a just-in-time modeling method [J]. AIChE Journal, 2016, 62(3): 717-725.
|
21 |
HazamaK, KanoM. Covariance-based locally weighted partial least squares for high-performance adaptive modeling [J]. Chemometrics & Intelligent Laboratory Systems, 2015, 146: 55-62.
|
22 |
袁小锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘算法的过程自适应软测量建模[J]. 化工学报, 2016, 67(3): 724-728.
|
|
YuanX F, GeZ Q, SongZ H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression [J]. CIESC Journal, 2016, 67(3): 724-728.
|
23 |
WangG, YinS, KaynakO. An LWPR-based data-driven fault detection approach for nonlinear process monitoring [J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 2016-2023.
|
24 |
YinS, XieX, SunW. A nonlinear process monitoring approach with locally weighted learning of available data [J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1507-1516.
|
25 |
UchimaruT, KanoM. Sparse sample regression based just-in-time modeling (SSR-JIT): beyond locally weighted approach [J]. IFAC Papers OnLine, 2016, 49(7): 502-507.
|
26 |
LiuJ, TaoL, JieZ. Window-based step-wise sequential phase partition for nonlinear batch process monitoring [J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9229-9243.
|
27 |
刘学彦, 王昕, 王振雷. 带遗忘因子的线性回归性能评估算法及应用[J]. 控制工程, 2014, 21(6): 867-872.
|
|
LiuX Y, WangX, WangZ L. Performance assessment algorithm of improved linear regression with forgetting factor (ILR) and its application [J]. Control Engineering of China, 2014, 21(6): 867-872.
|
28 |
张壤文, 田学民. 带变遗忘因子的自适应子空间预测控制器设计[J]. 化工学报, 2016, 67(3): 858-864.
|
|
ZhangR W, TianX M. Design of adaptive subspace predictive controller with variable forgetting factor [J]. CIESC Journal, 2016, 67(3): 858-864.
|
29 |
KerezsiJ. Computer simulation of an industrial ethane-cracking furnace operation [C]//International Youth Conference on Energy. IEEE, 2013: 1-5.
|
30 |
李平, 李奇安. 乙烯裂解炉先进控制系统开发与应用 [J]. 化工学报, 2011, 62(8): 2216-2220.
|
|
LiP, LiQ A. Development and application of advanced process control system for ethylene cracking heaters [J]. CIESC Journal, 2011, 62(8): 2216-2220.
|
31 |
江伟, 王昕, 王振雷. 基于 LTSA 和 MICA 与 PCA 联合指标的过程监控方法及应用[J]. 化工学报, 2015, 66(12): 4895-4903.
|
|
JiangW, WangX, WangZ L. LTSA and combined index based MICA and PCA process monitoring and application [J]. CIESC Journal, 2015, 66(12): 4895-4903.
|