化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 150-157.DOI: 10.11949/j.issn.0438-1157.20181069
收稿日期:
2018-09-25
修回日期:
2019-01-29
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
阎高伟
作者简介:
<named-content content-type="corresp-name">支恩玮</named-content>(1994—),男,硕士研究生,<email>zhienwei_tyut@163.com</email>|阎高伟(1970—),男,博士,教授,<email>yangaowei@tyut.edu.cn</email>
基金资助:
Enwei ZHI(),Fei YAN,Mifeng REN,Gaowei YAN(
)
Received:
2018-09-25
Revised:
2019-01-29
Online:
2019-03-31
Published:
2019-03-31
Contact:
Gaowei YAN
摘要:
在工况改变时,湿式球磨机的实时数据和建模数据分布不一致,不满足传统软测量建模方法要求的数据同分布假设,导致模型失准和性能恶化。为此,引入迁移学习思想,提出一种基于迁移变分自编码器-标签映射的软测量模型,实现多工况下湿式球磨机负荷参数的准确测量。首先,迁移目标域数据编码得到的隐变量分布参数,对源域数据对应隐变量进行拟合,再解码得到迁移数据;然后采用相似性度量选取相似样本构建标签映射模型,并得到映射标签;最后使用迁移数据和映射标签构建出最终的软测量模型。实验结果表明,该软测量方法显著优于现有方法,适用于多工况下的软测量建模。
中图分类号:
支恩玮, 闫飞, 任密蜂, 阎高伟. 基于迁移变分自编码器-标签映射的湿式球磨机负荷参数软测量[J]. 化工学报, 2019, 70(S1): 150-157.
Enwei ZHI, Fei YAN, Mifeng REN, Gaowei YAN. Soft sensor of wet ball mill load parameters based on transfer variational autoencoder - label mapping[J]. CIESC Journal, 2019, 70(S1): 150-157.
Working condition | TVAE | TVAE-LM | ||||
---|---|---|---|---|---|---|
MBVR | PD | CVR | MBVR | PD | CVR | |
1→2 | 0.1961 | 0.0345 | 0.0543 | 0.1236 | 0.0266 | 0.0164 |
1→3 | 0.3569 | 0.0430 | 0.1185 | 0.1398 | 0.0291 | 0.0213 |
3→1 | 0.5595 | 0.0791 | 0.0754 | 0.3065 | 0.0579 | 0.0349 |
3→2 | 0.2947 | 0.0594 | 0.0450 | 0.1181 | 0.0291 | 0.0157 |
表1 引入标签映射预测结果对比(RMSE)
Table 1 Comparison of prediction results by introducing label mapping(RMSE)
Working condition | TVAE | TVAE-LM | ||||
---|---|---|---|---|---|---|
MBVR | PD | CVR | MBVR | PD | CVR | |
1→2 | 0.1961 | 0.0345 | 0.0543 | 0.1236 | 0.0266 | 0.0164 |
1→3 | 0.3569 | 0.0430 | 0.1185 | 0.1398 | 0.0291 | 0.0213 |
3→1 | 0.5595 | 0.0791 | 0.0754 | 0.3065 | 0.0579 | 0.0349 |
3→2 | 0.2947 | 0.0594 | 0.0450 | 0.1181 | 0.0291 | 0.0157 |
1 | 汤健, 赵立杰, 柴天佑, 等. 基于振动频谱的磨机负荷在线软测量建模[J]. 信息与控制, 2012, 41(1): 123-128. |
TangJ, ZhaoL J, ChaiT Y, et al. On-line soft-sensing modelling of mill load based on vibration spectrum[J]. Information & Control, 2012, 41(1): 123-128. | |
2 | 王恒, 贾民平, 陈左亮. 基于LS-SVM和机理模型的球磨机料位软测量[J]. 电力自动化设备, 2010, 30(7): 92-95. |
WangH, JiaM P, ChenZ L. Soft measurement based on mechanism model and LS-SVM for fill level of ball mill[J]. Electric Power Automation Equipment, 2010, 30(7): 92-95. | |
3 | 汤健. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京: 国防工业出版社, 2015: 25-28. |
TangJ. Soft Sensing of Rotating Machinery Equipment Load Based on Spectrum Data Drive[M]. Beijing: National Defense Industry Press, 2015: 25-28. | |
4 | ZhouP, ChaiT Y, WangH. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4): 730-743. |
5 | XieS W, XieY F, LiF B, et al. Optimal setting and control for iron removal process based on adaptive neural network soft-sensor[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, (99): 1-13. |
6 | 程瑞辉, 阎高伟. 基于OBE-ELM的球磨机料位软测量[J]. 中北大学学报(自然科学版), 2017, 38(5): 574-579. |
ChengR H, YanG W. Soft sensor for ball mill fill level based on OBE-ELM model[J]. Journal of North University of China (Natural Science Edition), 2017, 38(5): 574-579. | |
7 | TangJ, WangD H, ChaiT Y. Predicting mill load using partial least squares and extreme learning machines[J]. Soft Computing, 2012, 16(9): 1585-1594. |
8 | XiaL Y, WangH N, ZhuP F, et al. Soft-sensor modeling method using kernel principal component analysis bagging ensemble neural network[J]. Information and Control, 2015, 44(5): 519-524. |
9 | 牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879. |
NiuD P, LiuY Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm[J]. CIESC Journal, 2017, 68(7): 2873-2879. | |
10 | YaoL, GeZ Q. Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498. |
11 | 汤健, 柴天佑, 丛秋梅, 等. 基于EMD和选择性集成学习算法的磨机负荷参数软测量[J]. 自动化学报, 2014, 40(9): 1853-1866. |
TangJ, ChaiT Y, CongQ M, et al. Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm[J]. Acta Automatica Sinica, 2014, 40(9): 1853-1866. | |
12 | 刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988. |
LiuJ, ShaoC, ZhuL. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988. | |
13 | GrubingerT, ChasparisG C, NatschlaegerT. Generalized online transfer learning for climate control in residential buildings[J]. Energy and Buildings, 2017, 139: 63-71. |
14 | YanK, ZhangD. Calibration transfer and drift compensation of e-noses via coupled task learning[J]. Sensors and Actuators B Chemical, 2016, 225: 288-297. |
15 | PanS J, YangQ. A survey on transfer learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10): 1345-1359. |
16 | 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. |
ZhuangF Z, LuoP, HeQ, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26:26-39. | |
17 | KanM, WuJ, ShanS, et al. Domain adaptation for face recognition: targetize source domain bridged by common subspace[J]. International Journal of Computer Vision, 2014, 109(1/2):94-109. |
18 | ZhuangF Z, LuoP, ShenZ Y, et al. Collaborative dual-PLSA: mining distinction and commonality across multiple domains for text classification[C]//Proceedings of the 19th ACM Conference on Information and Knowledge Management. Toronto, Canada: ACM, 2010: 359-368. |
19 | LongM S, WangJ M, DingG G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE, 2014: 1410-1417. |
20 | LongM S, WangJ M, DingG G, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805-1818. |
21 | LongM S, WangJ M, DingG G, et al. Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089. |
22 | LongM, WangJ, DingG, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2200-2207. |
23 | PanS J, TsangI W, KwokJ T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210. |
24 | KingmaD P, WellingM. Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations. Ithaca, NY: arXiv:1312.6114v10 [stat.ML], 2014. |
25 | BodinE, MalikI, EkC H, et al. Nonparametric inference for auto-encoding variational Bayes[J]. arXiv:1712.06536v1 [stat.ML], 2017. () |
26 | 恩擎. 基于图像自编码的神经网络特征学习研究及应用[D]. 北京: 北京工业大学, 2017. |
EnQ. Research and application on autoencoder based feature learning model of neural network[D]. Beijing: Beijing University of Technology, 2017. | |
27 | 虢齐. 基于深度学习的图像生成技术研究与应用[D]. 成都: 电子科技大学, 2017. |
GuoQ. Research and application of image generation based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
28 | 王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1867. |
WangS X, ChenH W, LiX P, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1867. | |
29 | SinaiS, KelsicE, ChurchG M, et al. Variational auto-encoding of protein sequences[J]. arXiv: 1712.03346v3 [q-bio.QM], 2017. () |
30 | HsuC C, HwangH T, WuY C, et al. Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks[C]//INTERSPEECH. Stockholm, Sweden: ISCA. 2017: 3364-3368. |
31 | WalkerJ, DoerschC, GuptaA, et al. An uncertain future: forecasting from static images using variational autoencoders[C]//14th European Conference on Computer Vision Proceedings. Part VII.Amsterdam, Netherlands, 2016. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[4] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[5] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[6] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[7] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 宋冰, 郑城风, 侍洪波, 陶阳, 谭帅. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638. |
[10] | 罗来明, 张劲, 郭志斌, 王海宁, 卢善富, 相艳. 1~5 kW高温聚合物电解质膜燃料电池堆的理论模拟与组装测试[J]. 化工学报, 2023, 74(4): 1724-1734. |
[11] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[12] | 吴心远, 刘奇磊, 曹博渊, 张磊, 都健. Group2vec:基于无监督机器学习的基团向量表示及其物性预测应用[J]. 化工学报, 2023, 74(3): 1187-1194. |
[13] | 张中秋, 李宏光, 石逸林. 基于人工预测调控策略的复杂化工过程多任务学习方法[J]. 化工学报, 2023, 74(3): 1195-1204. |
[14] | 张江淮, 赵众. 碳三加氢装置鲁棒最小协方差约束控制及应用[J]. 化工学报, 2023, 74(3): 1216-1227. |
[15] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 412
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||