1 |
汤健, 赵立杰, 柴天佑, 等. 基于振动频谱的磨机负荷在线软测量建模[J]. 信息与控制, 2012, 41(1): 123-128.
|
|
TangJ, ZhaoL J, ChaiT Y, et al. On-line soft-sensing modelling of mill load based on vibration spectrum[J]. Information & Control, 2012, 41(1): 123-128.
|
2 |
王恒, 贾民平, 陈左亮. 基于LS-SVM和机理模型的球磨机料位软测量[J]. 电力自动化设备, 2010, 30(7): 92-95.
|
|
WangH, JiaM P, ChenZ L. Soft measurement based on mechanism model and LS-SVM for fill level of ball mill[J]. Electric Power Automation Equipment, 2010, 30(7): 92-95.
|
3 |
汤健. 基于频谱数据驱动的旋转机械设备负荷软测量[M]. 北京: 国防工业出版社, 2015: 25-28.
|
|
TangJ. Soft Sensing of Rotating Machinery Equipment Load Based on Spectrum Data Drive[M]. Beijing: National Defense Industry Press, 2015: 25-28.
|
4 |
ZhouP, ChaiT Y, WangH. Intelligent optimal-setting control for grinding circuits of mineral processing process[J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4): 730-743.
|
5 |
XieS W, XieY F, LiF B, et al. Optimal setting and control for iron removal process based on adaptive neural network soft-sensor[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, (99): 1-13.
|
6 |
程瑞辉, 阎高伟. 基于OBE-ELM的球磨机料位软测量[J]. 中北大学学报(自然科学版), 2017, 38(5): 574-579.
|
|
ChengR H, YanG W. Soft sensor for ball mill fill level based on OBE-ELM model[J]. Journal of North University of China (Natural Science Edition), 2017, 38(5): 574-579.
|
7 |
TangJ, WangD H, ChaiT Y. Predicting mill load using partial least squares and extreme learning machines[J]. Soft Computing, 2012, 16(9): 1585-1594.
|
8 |
XiaL Y, WangH N, ZhuP F, et al. Soft-sensor modeling method using kernel principal component analysis bagging ensemble neural network[J]. Information and Control, 2015, 44(5): 519-524.
|
9 |
牛大鹏, 刘元清. 基于改进即时学习算法的湿法冶金浸出过程建模[J]. 化工学报, 2017, 68(7): 2873-2879.
|
|
NiuD P, LiuY Q. Modeling hydrometallurgical leaching process based on improved just-in-time learning algorithm[J]. CIESC Journal, 2017, 68(7): 2873-2879.
|
10 |
YaoL, GeZ Q. Deep learning of semi-supervised process data with hierarchical extreme learning machine and soft sensor application[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1490-1498.
|
11 |
汤健, 柴天佑, 丛秋梅, 等. 基于EMD和选择性集成学习算法的磨机负荷参数软测量[J]. 自动化学报, 2014, 40(9): 1853-1866.
|
|
TangJ, ChaiT Y, CongQ M, et al. Soft sensor approach for modeling mill load parameters based on EMD and selective ensemble learning algorithm[J]. Acta Automatica Sinica, 2014, 40(9): 1853-1866.
|
12 |
刘佳, 邵诚, 朱理. 基于迁移学习工况划分的裂解炉收率PSO-LS-SVM建模[J]. 化工学报, 2016, 67(5): 1982-1988.
|
|
LiuJ, ShaoC, ZhuL. Modeling of cracking furnace yields with PSO-LS-SVM based on operating condition classification by transfer learning[J]. CIESC Journal, 2016, 67(5): 1982-1988.
|
13 |
GrubingerT, ChasparisG C, NatschlaegerT. Generalized online transfer learning for climate control in residential buildings[J]. Energy and Buildings, 2017, 139: 63-71.
|
14 |
YanK, ZhangD. Calibration transfer and drift compensation of e-noses via coupled task learning[J]. Sensors and Actuators B Chemical, 2016, 225: 288-297.
|
15 |
PanS J, YangQ. A survey on transfer learning[J]. IEEE Transactions on Knowledge & Data Engineering, 2010, 22(10): 1345-1359.
|
16 |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
|
|
ZhuangF Z, LuoP, HeQ, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26:26-39.
|
17 |
KanM, WuJ, ShanS, et al. Domain adaptation for face recognition: targetize source domain bridged by common subspace[J]. International Journal of Computer Vision, 2014, 109(1/2):94-109.
|
18 |
ZhuangF Z, LuoP, ShenZ Y, et al. Collaborative dual-PLSA: mining distinction and commonality across multiple domains for text classification[C]//Proceedings of the 19th ACM Conference on Information and Knowledge Management. Toronto, Canada: ACM, 2010: 359-368.
|
19 |
LongM S, WangJ M, DingG G, et al. Transfer joint matching for unsupervised domain adaptation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, USA: IEEE, 2014: 1410-1417.
|
20 |
LongM S, WangJ M, DingG G, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805-1818.
|
21 |
LongM S, WangJ M, DingG G, et al. Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
|
22 |
LongM, WangJ, DingG, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Sydney, Australia: IEEE, 2013: 2200-2207.
|
23 |
PanS J, TsangI W, KwokJ T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
|
24 |
KingmaD P, WellingM. Auto-encoding variational Bayes[C]//Proceedings of the International Conference on Learning Representations. Ithaca, NY: arXiv:1312.6114v10 [stat.ML], 2014.
|
25 |
BodinE, MalikI, EkC H, et al. Nonparametric inference for auto-encoding variational Bayes[J]. arXiv:1712.06536v1 [stat.ML], 2017. ()
|
26 |
恩擎. 基于图像自编码的神经网络特征学习研究及应用[D]. 北京: 北京工业大学, 2017.
|
|
EnQ. Research and application on autoencoder based feature learning model of neural network[D]. Beijing: Beijing University of Technology, 2017.
|
27 |
虢齐. 基于深度学习的图像生成技术研究与应用[D]. 成都: 电子科技大学, 2017.
|
|
GuoQ. Research and application of image generation based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2017.
|
28 |
王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42(6): 1860-1867.
|
|
WangS X, ChenH W, LiX P, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42(6): 1860-1867.
|
29 |
SinaiS, KelsicE, ChurchG M, et al. Variational auto-encoding of protein sequences[J]. arXiv: 1712.03346v3 [q-bio.QM], 2017. ()
|
30 |
HsuC C, HwangH T, WuY C, et al. Voice conversion from unaligned corpora using variational autoencoding wasserstein generative adversarial networks[C]//INTERSPEECH. Stockholm, Sweden: ISCA. 2017: 3364-3368.
|
31 |
WalkerJ, DoerschC, GuptaA, et al. An uncertain future: forecasting from static images using variational autoencoders[C]//14th European Conference on Computer Vision Proceedings. Part VII.Amsterdam, Netherlands, 2016.
|