化工学报 ›› 2019, Vol. 70 ›› Issue (S1): 168-176.DOI: 10.11949/j.issn.0438-1157.20181404
收稿日期:
2018-11-23
修回日期:
2018-12-23
出版日期:
2019-03-31
发布日期:
2019-03-31
通讯作者:
王文龙
作者简介:
<named-content content-type="corresp-name">王超前</named-content>(1988—),女,博士研究生,<email>985577694@qq.com</email>|王文龙(1977—),男,博士,教授,<email>wwenlong@sdu.edu.cn</email>
基金资助:
Chaoqian WANG(),Wenlong WANG(),Zhe LI,Jing SUN,Zhanlong SONG,Xiqiang ZHAO,Yanpeng MAO
Received:
2018-11-23
Revised:
2018-12-23
Online:
2019-03-31
Published:
2019-03-31
Contact:
Wenlong WANG
摘要:
针对现有污泥热解技术耗时耗能、炭性能受限等难题,提出微波诱导协同热解的新型技术思路,即仅先用常规初级热解获得微波强化吸收的热解基体,再用微波诱导其高能位点效应,以期低能耗制备较高性能的污泥炭。对样品进行介电特性、工业分析等多种测试,在简要分析并验证该思路可行的基础上,探寻其能耗机制,以期为实际应用提供参考。结果表明,通过常规700℃热解10 min的热解基体,介电特性提高约22%,可在微波900 W中5 min升高到平均900℃;不仅提高炭性能,而且比常规700℃热解60 min节能省时达50%以上,这主要归因于对热解过程整体用时的显著缩减与微波能的高效利用。研究思路为低能耗制备高附加值污泥炭奠定工艺应用基础,有望实现污泥大规模资源化处置。
中图分类号:
王超前, 王文龙, 李哲, 孙静, 宋占龙, 赵希强, 毛岩鹏. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
Chaoqian WANG, Wenlong WANG, Zhe LI, Jing SUN, Zhanlong SONG, Xiqiang ZHAO, Yanpeng MAO. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating[J]. CIESC Journal, 2019, 70(S1): 168-176.
方法(类别) | 优 点 | 缺 点 |
---|---|---|
厌氧消化(处理) | 可减量、稳定污泥及回收沼气 | 污泥有机质含量低时沼气品质差、不经济,消化后的残渣中仍含有50%左右的有机质与大量病菌、重金属等需处置 |
填埋(处置) | 简单、易操作 | 占用土地、存在有机毒物和重金属浸出风险,也没有实现价值回收 |
堆肥(处置) | 可降解污泥中的有机物,并作为农田肥料 | 重金属会在植物中富集,通过食物链的传递而危害整个生物圈 |
焚烧(处置) | 可高效显著减量污泥并回收部分热能 | 成本高且易形成二英、重金属飞灰等二次污染问题 |
表1 污泥主要传统处理处置方法的优缺点对比[5,6,7,8]
Table 1 Comparison of advantages and disadvantages of main traditional treatment and disposal methods of sewage sludge[5,6,7,8]
方法(类别) | 优 点 | 缺 点 |
---|---|---|
厌氧消化(处理) | 可减量、稳定污泥及回收沼气 | 污泥有机质含量低时沼气品质差、不经济,消化后的残渣中仍含有50%左右的有机质与大量病菌、重金属等需处置 |
填埋(处置) | 简单、易操作 | 占用土地、存在有机毒物和重金属浸出风险,也没有实现价值回收 |
堆肥(处置) | 可降解污泥中的有机物,并作为农田肥料 | 重金属会在植物中富集,通过食物链的传递而危害整个生物圈 |
焚烧(处置) | 可高效显著减量污泥并回收部分热能 | 成本高且易形成二英、重金属飞灰等二次污染问题 |
炭化方法 | 优 点 | 缺 点 |
---|---|---|
直接炭化 | 高温热解炭的稳定性更强,可玻璃化固化重金属 | 耗时耗能、重金属易挥发 |
活化 | 污泥炭的孔隙结构发达,可提高吸附能力,低温热解降低制炭能耗 | 制备过程烦琐,活化剂、酸等大量试剂使用后妥善处理困难,增加重金属浸出风险 |
共热解 | 提高污泥炭的含碳量及孔隙结构,污泥炭的重金属含量小,低温热解降低制炭能耗 | 通过消耗大量生物质才可稀释污泥炭的重金属含量,但对减少重金属迁移的效果不明显 |
微波热解 | 可明显快速提高重金属固化的安全性及炭品质,且具备节能潜力 | 污泥是弱吸波介质,掺混的高品质强吸波介质的分离与回收利用是难题 |
表2 污泥主要炭化方法的优缺点对比[16,17,18,19,20,21,22,23,24,25,26]
Table 2 Comparison of advantages and disadvantages of main sludge carbonization methods[16,17,18,19,20,21,22,23,24,25,26]
炭化方法 | 优 点 | 缺 点 |
---|---|---|
直接炭化 | 高温热解炭的稳定性更强,可玻璃化固化重金属 | 耗时耗能、重金属易挥发 |
活化 | 污泥炭的孔隙结构发达,可提高吸附能力,低温热解降低制炭能耗 | 制备过程烦琐,活化剂、酸等大量试剂使用后妥善处理困难,增加重金属浸出风险 |
共热解 | 提高污泥炭的含碳量及孔隙结构,污泥炭的重金属含量小,低温热解降低制炭能耗 | 通过消耗大量生物质才可稀释污泥炭的重金属含量,但对减少重金属迁移的效果不明显 |
微波热解 | 可明显快速提高重金属固化的安全性及炭品质,且具备节能潜力 | 污泥是弱吸波介质,掺混的高品质强吸波介质的分离与回收利用是难题 |
测试参数 | SS② | BC③ | CT④ | XT⑤ |
---|---|---|---|---|
介电常数 | 1.64 | 1.59 | 1.61 | 1.87 |
介电损耗因子 | 0.74 | 0.87 | 0.94 | 1.34 |
tanδ | 0.45 | 0.55 | 0.58 | 0.72 |
固定碳含量①/% | 7.94 | 15.86 | 18.15 | 19.26 |
表3 污泥样品的介电与工业分析参数
Table 3 Dielectric and proximate analysis parameters of sludge samples
测试参数 | SS② | BC③ | CT④ | XT⑤ |
---|---|---|---|---|
介电常数 | 1.64 | 1.59 | 1.61 | 1.87 |
介电损耗因子 | 0.74 | 0.87 | 0.94 | 1.34 |
tanδ | 0.45 | 0.55 | 0.58 | 0.72 |
固定碳含量①/% | 7.94 | 15.86 | 18.15 | 19.26 |
样品 | 热解时间/min | 产率/% | 比表面积/ (m2/g) | Zn | Cu | ||
---|---|---|---|---|---|---|---|
污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | 污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | ||||
常规热解污泥炭 | 60 | 61 | 47 | 116 | 2.93 | 53 | 2.16 |
协同热解污泥炭 | 15 | 54 | 59 | 172 | 1.07 | 89 | 0.94 |
表4 两种污泥炭各种表征测试结果
Table 4 Test results of two sludge chars
样品 | 热解时间/min | 产率/% | 比表面积/ (m2/g) | Zn | Cu | ||
---|---|---|---|---|---|---|---|
污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | 污泥炭固化重金属量/(mg/kg) | 重金属浸出量/(mg/L) | ||||
常规热解污泥炭 | 60 | 61 | 47 | 116 | 2.93 | 53 | 2.16 |
协同热解污泥炭 | 15 | 54 | 59 | 172 | 1.07 | 89 | 0.94 |
半程热解污泥温度状态 | 过程总用时/min | 散热节能率/% | 总节能率/% |
---|---|---|---|
室温冷态 | 15(10+5) | 75 | 69.4 |
实际热态 | 12(10+2) | 80 | 77.8 |
表5 半程热解污泥在不同温度状态时的过程节能率
Table 5 Process energy saving rate of semi-pyrolytic sludge under different temperature
半程热解污泥温度状态 | 过程总用时/min | 散热节能率/% | 总节能率/% |
---|---|---|---|
室温冷态 | 15(10+5) | 75 | 69.4 |
实际热态 | 12(10+2) | 80 | 77.8 |
1 | VinayK T, ShangL L. Sludge: a waste or renewable source for energy and resources recovery[J]. Renewable and Sustainable Energy Reviews, 2013, 25: 708-728. |
2 | LiZ J, DengH, YangL, et al. Influence of potassium hydroxide activation on characteristics and environmental risk of heavy metals in chars derived from municipal sewage sludge[J]. Bioresource Technology, 2018, 256: 216-223. |
3 | YangG, ZhangG M, WangH C. Current state of sludge production, management, treatment and disposal in China[J]. Water Res., 2015, 78: 60-73. |
4 | 黄月娥. 城市污泥5种重金属分布特征及其环境风险评价[D]. 淮南: 安徽理工大学, 2016. |
HuangY E. Distribution characteristics and environmental risk assessment of five heavy metals in sewage sludge[D]. Huainan: AnHui University of Science and Technology, 2016. | |
5 | AlexandrosK, AthanasiosS S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32: 1186-1195. |
6 | XiaoL S, LinT, WangY, et al. Comparative life cycle assessment of sludge management: a case study of Xiamen, China[J]. Journal of Cleaner Production, 2018, 192: 354-363. |
7 | 方平, 唐子君, 钟佩怡, 等. 城市污泥焚烧渣中重金属的浸出特性[J]. 化工进展, 2017, 36(6): 2304-2310. |
FangP, TangZ J, ZhongP Y, et al. A study on leaching characteristics of heavy metals in sludge incineration slag[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2304-2310. | |
8 | 于晓庆, 董滨, 何群彪, 等. 污水污泥和消化污泥热解过程中重全属迁移转化行为对比分析[J]. 净水技术, 2017, 36(12): 27-32. |
YuX Q, DongB, HeQ B, et al. Comparative analysis of heavy metals migration and transformation between sewage sludge and digested sludge during pyrolysis process[J].Water Purification Technology, 2017, 36(12): 27-32. | |
9 | JinZ Y, ChangF M, MengF L, et al. Sustainable pyrolytic sludge-char preparation on improvement of closed-loop sewage sludge treatment: characterization and combined in-situ application[J]. Chemosphere, 2017, 184: 1043-1053. |
10 | JorgeP F, AuroraN, AnaM, et al. Biochar from biosolids pyrolysis: a review[J]. Int. J. Environ. Res. Public Health., 2018, 15: 956. |
11 | AnetaM, SebastianW. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS[J]. Waste Management, 2014, 34: 174-179. |
12 | ChenD Z, YinL J, WangH, et al. Pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2014, 34: 2466-2486. |
13 | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学, 2017. |
WeiS Y. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: University of Chinese Academy of Sciences, 2017. | |
14 | ChanakaW D U, AndreiV, ApostolosG, et al. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018, 226: 721-744. |
15 | 戴亮, 任珺, 陶玲, 等. 不同热解温度下污泥基生物炭的性质及对Cd2+的吸附特性[J]. 环境工程学报, 2017, 11(7): 4029-4035. |
DaiL, RenJ, TaoL, et al. Properties of sewage sludge biochar produced under different pyrolysis temperatures and its sorption capability to Cd2+[J]. Chinese Journal of Environmental Engineering, 2017, 11(7): 4029-4035. | |
16 | 汤斯奇, 王经臣, JaehacK. 不同热解终温和保留时间下污泥生物质炭孔隙结构特征[J]. 北京大学学报(自然科学版), 2017, 53(5): 890-898. |
TangS Q, WangJ C, JaehacK. Pore Structure characteristics of sludge biochars during pyrolysis with various pyrolysis temperatures and holding times[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(5): 890-898. | |
17 | JinJ W, WangM Y, CaoY C, et al. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: biochar properties and environmental risk from metals[J]. Bioresource Technology, 2017, 228: 218-226. |
18 | 鲁涛, 袁浩然, 王亚琢, 等. 热解温度对污泥生物炭稳定性及养分淋溶特性影响[J]. 化工学报, 2015, 66(7): 2664-2669. |
LuT, YuanH R, WangY Z, et al. Influence of pyrolysis temperature on biochar stability and leaching properties of nutrients contained in biochar[J]. CIESC Journal, 2015, 66(7): 2664-2669. | |
19 | 彭成法, 肖汀璇, 李志建. 热解温度对污泥基生物炭结构特性及对重金属吸附性能的影响[J]. 环境科学研究, 2017, 30(10): 1637-1644. |
PengC F, XiaoT X, LiZ J. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Research of Environmental Sciences, 2017, 30(10): 1637-1644. | |
20 | 王鹤, 李芬, 张彦平, 等. 污水厂剩余污泥材料化和能源利用技术研究进展[J]. 材料导报A: 综述篇, 2016, 30(7): 119-124. |
WangH, LiF, ZhangY P, et al. Research process in materialization and energy utilization of the surplus sludge of sewage treatment[J]. Mater. Rev.: Rev., 2016, 30(7): 119-124. | |
21 | FangS W, YuZ S, LinY. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives[J]. Applied Thermal Engineering, 2017, 111: 292-300. |
22 | JusticeA, SusanH, MichaelC, et al. Recent developments in microwave-assisted thermal conversion of biomass for fuels and chemicals[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 642-657. |
23 | 方琳. 微波能作用下污泥脱水和高温热解的效能与机制[D]. 哈尔滨: 哈尔滨工业大学, 2007. |
FangL. Efficiency and mechanism of sewage sludge dewatering and pyrolysis under treatment of microwave energy[D]. Harbin: Harbin Institute of Technology, 2007. | |
24 | ZhangJ, TianY, YinL L, et al. Insight into the effects of biochar as adsorbent and microwave receptor from one-step microwave pyrolysis of sewage sludge[J]. Environmental Science and Pollution Research, 2018, 25: 18424-18433. |
25 | ElsaA, JamesS, GrahamB, et al. Biochar produced from biosolids using a single-mode microwave: characterisation and its potential for phosphorus removal[J]. Journal of Environmental Management, 2017, 196: 119-126. |
26 | 郭子逸, 邵敬爱, 王贤华, 等. 污泥微波热解过程重金属转化特性与风险评估[J]. 环境工程学报, 2017, 11(3): 1801-1806. |
GuoZ Y, ShaoJ A, WangX H, et al. Transformation characteristic of heavy metals during microwave pyrolysis of sewage sludge and risk assessment[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1801-1806. | |
27 | WangW L, Zhao, SunJ, et al. Quantitative measurement of energy utilization efficiency and study of influence factors in typical microwave heating process[J]. Energy, 2015, 87: 678-685. |
28 | WangW L, WangB, SunJ, et al. Numerical simulation of hot-spot effects in microwave heating due to existence of strong microwave-absorbing media[J]. RSC Advances, 2016, 6: 52974-52981. |
29 | YolandaF, AnaA, Angel MJ.. Advances in Induction and Microwave Heating of Mineral and Organic Materials// Microwave Heating Applied to Pyrolysis[M]. Chicago: InTech Publishing, 2011: 723-752. |
30 | 王晴东. 基于多物理场的褐煤微波热解制气特性及机理研究[D]. 武汉: 武汉科技大学, 2016. |
WangQ D. Microwave pyrolysis gasification characteristics and mechanism study of lignite based on the multi-physics field[D]. Wuhan: Wuhan University of Science and Technology, 2016. | |
31 | 王擎, 桓现坤, 寇震, 等. 微波场中油页岩及半焦升温特性[J]. 微波学报 , 2009, 25(1): 92-96. |
WangQ, HuanX K, KouZ, et al. Temperature rising characteristic of oil shale and semi-coke under the microwave field[J]. Journal of Microwave, 2009, 25(1): 92-96. |
[1] | 高润淼, 宋孟杰, 高恩元, 张龙, 张旋, 邵苛苛, 甄泽康, 江正勇. 冷链装备制冷剂相关温室气体减排研究进展[J]. 化工学报, 2023, 74(S1): 1-7. |
[2] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[3] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[4] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[5] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[6] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[9] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[10] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[11] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[12] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[13] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[14] | 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478. |
[15] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||