化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3266-3278.DOI: 10.11949/0438-1157.20230723
韩晨1(), 司徒友珉1, 朱斌2, 许建良1(), 郭晓镭1, 刘海峰1
收稿日期:
2023-07-12
修回日期:
2023-08-19
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
许建良
作者简介:
韩晨(1998—), 男, 硕士研究生, 1395262227@qq.com
基金资助:
Chen HAN1(), Youmin SITU1, Bin ZHU2, Jianliang XU1(), Xiaolei GUO1, Haifeng LIU1
Received:
2023-07-12
Revised:
2023-08-19
Online:
2023-08-25
Published:
2023-10-18
Contact:
Jianliang XU
摘要:
利用气化技术处理有机废液是废弃物资源化利用的新途径。以工业多喷嘴对置式粉煤气化炉为研究对象,采用数值模拟的方法研究了协同处理废液的气化炉内反应和流动过程。研究结果表明,废液的输入降低了出口合成气中CO的含量,增加了H2、H2O和CO2的含量;废液输入使出口合成气温度降低,碳转化率降低,有效气收率增加。废液流阻挡了炉内上升折射流对顶部的冲击,降低了顶部空间的温度。气化炉顶部壁面的灰渣沉积速率随着废液增加呈现先增大后减小的趋势,其他部位壁面受影响较小。协同处理废液能够增加气化炉的有效气产量,延长顶部开工烧嘴的使用寿命,是良好的废弃物资源化利用途径。综合考虑,建议的废液输入量为12~14 t·h-1。
中图分类号:
韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278.
Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater[J]. CIESC Journal, 2023, 74(8): 3266-3278.
k | n | ||
---|---|---|---|
6.8×1015 | 1.68×108 | — | |
2.2×1012 | 1.67×108 | — | |
3.0×108 | 1.26×108 | — | |
4.1×1011 | 1.68×108 | — | |
2.75×1010 | 8.38×107 | — | |
8710 | 17967 | 0.65 | |
4.4 | 1.47×108 | 0.6 | |
1.33 | 1.62×108 | 0.4 |
表 1 反应动力学参数[14,29-30]
Table 1 Reaction kinetics[14,29-30]
k | n | ||
---|---|---|---|
6.8×1015 | 1.68×108 | — | |
2.2×1012 | 1.67×108 | — | |
3.0×108 | 1.26×108 | — | |
4.1×1011 | 1.68×108 | — | |
2.75×1010 | 8.38×107 | — | |
8710 | 17967 | 0.65 | |
4.4 | 1.47×108 | 0.6 | |
1.33 | 1.62×108 | 0.4 |
项目 | ||||||||
---|---|---|---|---|---|---|---|---|
碳转化率≥ | 碳转化率< | 碳转化率≥ | 碳转化率< | |||||
黏附 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | |
反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 反弹 | 反弹 | 反弹 |
表2 颗粒黏附判据[22]
Table 2 Criterion of particles adhesion[22]
项目 | ||||||||
---|---|---|---|---|---|---|---|---|
碳转化率≥ | 碳转化率< | 碳转化率≥ | 碳转化率< | |||||
黏附 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 黏附 | |
反弹 | 黏附 | 反弹 | 黏附 | 反弹 | 反弹 | 反弹 | 反弹 |
参数 | 数值 |
---|---|
氧气流量/(k·h-1) | 104956.48 |
粉煤流量/(kg·h-1) | 139868.00 |
CO2流量/(kg·h-1) | 29145.15 |
粉煤密度/(kg·m-3) | 1400 |
废液密度/(kg·m-3) | 848 |
废液温度/K | 320 |
渣厚度/mm | 10 |
渣热导率/(W·m-1·K-1) | 1.42 |
锅炉水压力/MPa(G) | 5.0 |
操作压力/MPa(G) | 4.0 |
表3 边界条件
Table 3 Boundary conditions
参数 | 数值 |
---|---|
氧气流量/(k·h-1) | 104956.48 |
粉煤流量/(kg·h-1) | 139868.00 |
CO2流量/(kg·h-1) | 29145.15 |
粉煤密度/(kg·m-3) | 1400 |
废液密度/(kg·m-3) | 848 |
废液温度/K | 320 |
渣厚度/mm | 10 |
渣热导率/(W·m-1·K-1) | 1.42 |
锅炉水压力/MPa(G) | 5.0 |
操作压力/MPa(G) | 4.0 |
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | 水分 | C | H | O | N | S |
19.76 | 56.15 | 21.89 | 2.20 | 62.18 | 4.16 | 9.36 | 1.18 | 0.74 |
表4 煤质分析数据
Table 4 Coal analysis data
工业分析/%(质量) | 元素分析/%(质量) | |||||||
---|---|---|---|---|---|---|---|---|
挥发分 | 固定碳 | 灰分 | 水分 | C | H | O | N | S |
19.76 | 56.15 | 21.89 | 2.20 | 62.18 | 4.16 | 9.36 | 1.18 | 0.74 |
成分 | 占比/%(质量) |
---|---|
环己酮 | 1.99 |
环己醇 | 0.46 |
苯 | 1.34 |
己内酰胺 | 25.57 |
水 | 52.74 |
盐类及杂质 | 17.89 |
表5 废液组成
Table 5 Wastewater composition
成分 | 占比/%(质量) |
---|---|
环己酮 | 1.99 |
环己醇 | 0.46 |
苯 | 1.34 |
己内酰胺 | 25.57 |
水 | 52.74 |
盐类及杂质 | 17.89 |
数据 | CO/% | CO2/% | H2/% | N2/% | 碳转化率/% | 出口 温度/K |
---|---|---|---|---|---|---|
工业数据Ⅰ | 71.99 | 1.01 | 25.5 | 0.8 | 99.5 | 1608 |
模拟数据Ⅰ | 71.42 | 1.11 | 25.15 | 0.62 | 99.9 | 1589 |
工业数据Ⅱ | 70.94 | 1.29 | 21.65 | 5.78 | 99.0 | 1852 |
模拟数据Ⅱ | 69.65 | 1.23 | 22.86 | 6.04 | 99.3 | 1877 |
工业数据Ⅲ | 47.84 | 15.54 | 36.16 | 0.44 | 98.9 | 1562 |
模拟数据Ⅲ | 48.76 | 14.23 | 36.08 | 0.34 | 98.82 | 1602 |
表6 气化炉出口合成气模拟数据与工业数据对比
Table 6 Comparison of simulation data with industrial data of gasifier outlet syngas
数据 | CO/% | CO2/% | H2/% | N2/% | 碳转化率/% | 出口 温度/K |
---|---|---|---|---|---|---|
工业数据Ⅰ | 71.99 | 1.01 | 25.5 | 0.8 | 99.5 | 1608 |
模拟数据Ⅰ | 71.42 | 1.11 | 25.15 | 0.62 | 99.9 | 1589 |
工业数据Ⅱ | 70.94 | 1.29 | 21.65 | 5.78 | 99.0 | 1852 |
模拟数据Ⅱ | 69.65 | 1.23 | 22.86 | 6.04 | 99.3 | 1877 |
工业数据Ⅲ | 47.84 | 15.54 | 36.16 | 0.44 | 98.9 | 1562 |
模拟数据Ⅲ | 48.76 | 14.23 | 36.08 | 0.34 | 98.82 | 1602 |
废液流量/(t·h-1) | CO/%(体积) | H2/%(体积) | H2O/%(体积) | CO2/%(体积) | 出口温度/K | 碳转化率/% |
---|---|---|---|---|---|---|
0 | 64.15 | 22.53 | 7.20 | 5.31 | 1780 | 99.48 |
2 | 63.33 | 23.10 | 7.25 | 5.40 | 1763 | 99.37 |
4 | 62.53 | 23.62 | 7.33 | 5.55 | 1746 | 99.28 |
6 | 61.98 | 24.09 | 7.44 | 5.62 | 1731 | 99.18 |
8 | 61.34 | 24.46 | 7.61 | 5.76 | 1719 | 99.09 |
10 | 60.65 | 24.80 | 7.68 | 5.97 | 1705 | 99.00 |
12 | 59.98 | 25.05 | 7.89 | 6.18 | 1691 | 98.94 |
14 | 59.21 | 25.18 | 8.15 | 6.33 | 1677 | 98.82 |
16 | 58.63 | 25.30 | 8.48 | 6.63 | 1667 | 98.68 |
表7 不同废液量下的气化性能
Table 7 Gasification performance under different wastewater mass flow rates
废液流量/(t·h-1) | CO/%(体积) | H2/%(体积) | H2O/%(体积) | CO2/%(体积) | 出口温度/K | 碳转化率/% |
---|---|---|---|---|---|---|
0 | 64.15 | 22.53 | 7.20 | 5.31 | 1780 | 99.48 |
2 | 63.33 | 23.10 | 7.25 | 5.40 | 1763 | 99.37 |
4 | 62.53 | 23.62 | 7.33 | 5.55 | 1746 | 99.28 |
6 | 61.98 | 24.09 | 7.44 | 5.62 | 1731 | 99.18 |
8 | 61.34 | 24.46 | 7.61 | 5.76 | 1719 | 99.09 |
10 | 60.65 | 24.80 | 7.68 | 5.97 | 1705 | 99.00 |
12 | 59.98 | 25.05 | 7.89 | 6.18 | 1691 | 98.94 |
14 | 59.21 | 25.18 | 8.15 | 6.33 | 1677 | 98.82 |
16 | 58.63 | 25.30 | 8.48 | 6.63 | 1667 | 98.68 |
1 | 王辅臣. 煤气化技术在中国:回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
2 | Aprianti N, Faizal M, Said M, et al. Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis[J]. Energy, 2023, 268: 126666. |
3 | Lv B, Deng X W, Jiao F S, et al. Enrichment and utilization of residual carbon from coal gasification slag: a review[J]. Process Safety and Environmental Protection, 2023, 171: 859-873. |
4 | 李卫华. 碳达峰背景下我国煤炭利用效率测算及提升[J]. 煤炭技术, 2021, 40(11): 239-241. |
Li W H. China's coal utilization efficiency calculation and improvement under background of carbon peak[J]. Coal Technology, 2021, 40(11): 239-241. | |
5 | 王利峰. 我国煤气化技术发展与展望[J]. 洁净煤技术, 2022, 28(2): 115-121. |
Wang L F. Development and prospect of coal gasification technology in China[J]. Clean Coal Technology, 2022, 28(2): 115-121. | |
6 | Higman C, Tam S. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels[J]. Chemical Reviews, 2014, 114(3): 1673-1708. |
7 | Wang F C, Yu G S, Liu H F, et al. Opposed multi-burner gasification technology: recent process of fundamental research and industrial application[J]. Chinese Journal of Chemical Engineering, 2021, 35: 124-142. |
8 | Chang S H. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review[J]. Environmental Science and Pollution Research, 2020, 27(26): 32371-32388. |
9 | 汪向阳, 陈金思, 胡献国, 等. 乙醇/苯胺废液热解及燃烧动力学研究[J]. 环境工程, 2016, 34(S1): 1117-1124. |
Wang X Y, Chen J S, Hu X G, et al. Pyrolysis and combustion kinetics analysis of ethanol/aniline wastewater[J]. Environmental Engineering, 2016, 34(S1): 1117-1124. | |
10 | Wang D W, Zhao G B, Du C M, et al. Combustion characteristics of plant chemical polyol waste liquor in a pilot water-cooled Incinerator[J]. Energies, 2019, 12(22): 4369. |
11 | Gu S Q, Xu Z Q, Dai Y X, et al. The resource utilization of coal gasification wastewater by co-slurry with lignite: slurryability, dispersion/aggregation behavior, and co-slurrying mechanisms[J]. Fuel, 2023, 352: 129114. |
12 | Chen Y H, Lan Thao Ngo T N, Chiang K Y. Enhanced hydrogen production in co-gasification of sewage sludge and industrial wastewater sludge by a pilot-scale fluidized bed gasifier[J]. International Journal of Hydrogen Energy, 2021, 46(27): 14083-14095. |
13 | 邵守言, 郭庆华, 陈雪莉, 等. 酒精发酵废液煤浆气流床气化实验研究[J]. 煤炭转化, 2009, 32(4): 39-43. |
Shao S Y, Guo Q H, Chen X L, et al. Experimental study of coal alcohol fermentation wastewater slurry entrained-flow gasification[J]. Coal Conversion, 2009, 32(4): 39-43. | |
14 | Sun Z H, Dai Z H, Zhou Z J, et al. Numerical simulation of industrial opposed multiburner coal-water slurry entrained flow gasifier[J]. Industrial & Engineering Chemistry Research, 2012, 51(6): 2560-2569. |
15 | 代正华, 刘海峰, 于广锁, 等. 四喷嘴对置式撞击流的数值模拟[J]. 华东理工大学学报, 2004, 30(1): 65-68. |
Dai Z H, Liu H F, Yu G S, et al. Numeric simulation of the flow field in four opposed impinging jets[J]. Journal of East China University of Science and Technology, 2004, 30(1): 65-68. | |
16 | Xu J L, Zhao H, Dai Z H, et al. Numerical simulation of opposed multi-burner gasifier under different coal loading ratio[J]. Fuel, 2016, 174: 97-106. |
17 | Gong Y, Guo Q H, Zhu H W, et al. Refractory failure in entrained-flow gasifier: investigation of partitioned erosion characteristics in an industrial opposed multi-burner gasifier[J]. Chemical Engineering Science, 2019, 210: 115227. |
18 | Lin K, Shen Z J, Liang Q F, et al. Modelling of slag flow and prediction of corrosion state of refractory bricks in an entrained-flow gasifier[J]. Fuel, 2020, 275: 117979. |
19 | Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth[J]. Progress in Energy and Combustion Science, 1990, 16(4): 327-345. |
20 | Shannon G N, Rozelle P L, Pisupati S V, et al. Conditions for entrainment into a FeO x containing slag for a carbon-containing particle in an entrained coal gasifier[J]. Fuel Processing Technology, 2008, 89(12): 1379-1385. |
21 | Li S H, Whitty K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Processing Technology, 2012, 95: 127-136. |
22 | Yong S Z, Gazzino M, Ghoniem A. Modeling the slag layer in solid fuel gasification and combustion—formulation and sensitivity analysis[J]. Fuel, 2012, 92(1): 162-170. |
23 | Lin F F, Shen Z J, Liang Q F, et al. Comprehensive adhesion model based on the surface characteristics of the coal particles[J]. Fuel, 2022, 315: 123219. |
24 | 葛琎, 张椰, 何勇, 等. 顶喷加压粉煤气化炉及壁面灰渣沉积的数值模拟研究[J]. 燃烧科学与技术, 2022, 28(4): 371-378. |
Ge J, Zhang Y, He Y, et al. Numerical simulation of ash deposition on the wall of a top-spray pulverized coal gasifier[J]. Journal of Combustion Science and Technology, 2022, 28(4): 371-378. | |
25 | Xu J L, Dai Z H, Liu H F, et al. Modeling of multiphase reaction and slag flow in single-burner coal water slurry gasifier[J]. Chemical Engineering Science, 2017, 162: 41-52. |
26 | Wu Y X, Zhang J S, Smith P J, et al. Three-dimensional simulation for an entrained flow coal slurry gasifier[J]. Energy& Fuels, 2010, 24(2): 1156-1163. |
27 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
28 | 贺翔宇, 邱剑勇, 许建良, 等. 辐射废锅内熔渣传热过程动态分析[J]. 高校化学工程学报, 2020, 34(2): 326-334. |
He X Y, Qiu J Y, Xu J L, et al. Dynamic analysis of heat transfer processes of molten slag in a radiant syngas cooler[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 326-334. | |
29 | Watanabe H, Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier[J]. Fuel, 2006, 85(12): 1935-1943. |
30 | Choi Y C, Li X Y, Park T J, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel, 2001, 80(15): 2193-2201. |
31 | Blasiak W, Tao L, Vaclavinek J, et al. Modeling of kraft recovery boilers[J]. Energy Conversion and Management, 1997, 38(10): 995-1005. |
32 | Song X F, Ji X Y, Bie H P, et al. Characteristics of gas and char generation study from reed black liquor particles (RBLP) pyrolysis in fluidized bed[J]. Fuel, 2015, 159: 89-97. |
33 | 王大伟, 赵广播, 李瑀婷. 植物化工醇废液热解动力学研究[J]. 节能技术, 2018, 36(4): 291-295. |
Wang D W, Zhao G B, Li Y T. Kinetics of plant chemical polyol waste liquor pyrolysis[J]. Energy Conservation Technology, 2018, 36(4): 291-295. | |
34 | Merrick D. Mathematical models of the thermal decomposition of coal(1): The evolution of volatile matter[J]. Fuel, 1983, 62(5): 534-539. |
35 | 许建良, 赵辉, 代正华, 等. 单喷嘴水煤浆气化炉高径比对反应流动的影响[J]. 化学工程, 2016, 44(4): 68-73. |
Xu J L, Zhao H, Dai Z H, et al. Influences of height-diameter ratio on multiphase reaction flow of single-burner coal water slurry gasifier[J]. Chemical Engineering(China), 2016, 44(4): 68-73. | |
36 | Magnussen B. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow[C]//Proceeding of the 19th Aerospace Sciences Meeting. Reston, Virginia: AIAA, 1981: 42. |
37 | 仇鹏, 韩洋, 许建良, 等. 用于预测气流床煤气化的EDC模型参数研究[J]. 化工学报, 2023, 74(1): 428-437. |
Qiu P, Han Y, Xu J L, et al. Study of EDC parameters for predicting entrained flow coal gasification[J]. CIESC Journal, 2023, 74(1): 428-437. | |
38 | Zhang B B, Shen Z J, Liang Q F, et al. Modeling study of residence time of molten slag on the wall in an entrained flow gasifier[J]. Fuel, 2018, 212: 437-447. |
39 | 许建良. 气流床气化炉内多相湍流反应流动的实验研究与数值模拟[D]. 上海: 华东理工大学, 2008. |
Xu J L. Experimental research and numerical simulation of the multiphase turbulent reaction flow in entrained-flow gasifiers[D]. Shanghai: East China University of Science and Technology, 2008. | |
40 | 孙晓宇. 煤的热解气化过程模拟研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014. |
Sun X Y. Simulation study on pyrolysis and gasification process of coal[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2014. | |
41 | 徐越, 吴一宁, 危师让. 基于Shell煤气化工艺的干煤粉加压气流床气化炉性能研究[J]. 西安交通大学学报, 2003, 37(11): 1132-1136. |
Xu Y, Wu Y N, Wei S R. Study on performance of dry feed entrained flow bed gasifier based on shell gasification technology[J]. Journal of Xi'an Jiaotong University, 2003, 37(11): 1132-1136. | |
42 | Zhang B B, Shen Z J, Liang Q F, et al. Modeling the slag flow and heat transfer with the effect of fluid-solid slag layer interface viscosity in an entrained flow gasifier[J]. Applied Thermal Engineering, 2017, 122: 785-793. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 542
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||