化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2691-2698.DOI: 10.11949/0438-1157.20181222
收稿日期:
2018-10-17
修回日期:
2019-04-11
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
张现仁
作者简介:
王昱焜(1993—),男,硕士研究生,<email>wyk1211@qq.com</email>
基金资助:
Yukun WANG(),Xianren ZHANG(),Dapeng CAO
Received:
2018-10-17
Revised:
2019-04-11
Online:
2019-07-05
Published:
2019-07-05
Contact:
Xianren ZHANG
摘要:
利用κ-K?hler理论对西安、北京两地大气气溶胶体系的吸湿特性进行研究。选取多种代表性无机物(硫酸盐、硝酸盐、氯盐)及有机物(烯烃、芳香烃、羧酸)建立气溶胶体系模型,使研究体系更接近于真实大气成分。结果表明,在空气质量由清洁状态向雾霾发生状态转变的过程中,两种体系中均呈现有机物含量逐渐减少而(NH4)2SO4和NH4NO3含量逐渐增多的趋势,这种变化趋势总是促使气溶胶体系整体吸湿能力增强,因此更易吸湿增长形成雾霾。对体系中不同组分对吸湿性的影响进行了定量预测,理论预测的变动趋势与实际观测的变动趋势相同,揭示了雾霾形成过程中各组分的变动趋势及影响程度,为针对性解决雾霾问题提供思路。
中图分类号:
王昱焜, 张现仁, 曹达鹏. 利用κ-Köhler理论研究大气气溶胶的吸湿特性[J]. 化工学报, 2019, 70(7): 2691-2698.
Yukun WANG, Xianren ZHANG, Dapeng CAO. Study on hygroscopic properties of atmospheric aerosols using κ-Köhler theory[J]. CIESC Journal, 2019, 70(7): 2691-2698.
有机物 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κorg |
---|---|---|---|---|---|
环戊烯 | 0.77 | 0.47 | 0.61 | 0.12 | 0.156 |
甲苯 | 0.87 | 0.30 | 0.35 | 0.10① | |
丙二酸 | 1.62 | 0.23 | 0.14 | 0.34 |
表1 有机物吸湿因子κorg的计算
Table 1 Calculation of κorg of organic compounds
有机物 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κorg |
---|---|---|---|---|---|
环戊烯 | 0.77 | 0.47 | 0.61 | 0.12 | 0.156 |
甲苯 | 0.87 | 0.30 | 0.35 | 0.10① | |
丙二酸 | 1.62 | 0.23 | 0.14 | 0.34 |
物质 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κall |
---|---|---|---|---|---|
(NH4)2SO4 | 1.77 | 0.171 | 0.160 | 0.60 | 0.388 |
NH4NO3 | 1.72 | 0.247 | 0.239 | 0.57 | |
NH4Cl | 1.53 | 0.034 | 0.037 | 1.20 | |
有机物 | 0.91 | 0.548 | 0.564 | 0.156 |
表2 北京地区清洁期气溶胶总吸湿因子κall的计算
Table 2 Calculation of κall of aerosol during clean period in Beijing
物质 | 密度/(g/cm3) | 质量分数 | 体积分数 | κi | κall |
---|---|---|---|---|---|
(NH4)2SO4 | 1.77 | 0.171 | 0.160 | 0.60 | 0.388 |
NH4NO3 | 1.72 | 0.247 | 0.239 | 0.57 | |
NH4Cl | 1.53 | 0.034 | 0.037 | 1.20 | |
有机物 | 0.91 | 0.548 | 0.564 | 0.156 |
1 | RavishankaraA R. Heterogeneous and multiphase chemistry in the troposphere[J]. Science, 1997, 276(5315): 1058-1065. |
2 | SeinfeldJ H, PandisS N. Atmospheric Chemistry and Physics: from Air Pollution to Climate Change[M]. New York: John Wiley & Sons, 2016. |
3 | CruzC N, PandisS N. A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei[J]. Atmospheric Environment, 1997, 31(15): 2205-2214. |
4 | RaymondT M, PandisS N. Cloud activation of single‐component organic aerosol particles[J]. Journal of Geophysical Research: Atmospheres, 2002,107(D24): AAC 16-1-AAC 16-8. |
5 | DinarE, TaraniukI, GraberE R, et al. Cloud condensation nuclei properties of model and atmospheric HULIS[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2465-2482. |
6 | HämeriK, LaaksonenA, VäkeväM, et al. Hygroscopic growth of ultrafine sodium chloride particles[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D18): 20749-20757. |
7 | HuD, QiaoL, ChenJ, et al. Hygroscopicity of inorganic aerosols: size and relative humidity effects on the growth factor[J]. Aerosol and Air Quality Research, 2010, 10: 255-264. |
8 | WeingartnerE, GyselM, BaltenspergerU. Hygroscopicity of aerosol particles at low temperatures(Ⅰ): New low-temperature H-TDMA instrument: setup and first applications[J]. Environmental Science and Technology, 2002, 36(1): 55-62. |
9 | TangI N, MunkelwitzH R. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols[J]. Atmospheric Environment. Part A. General Topics, 1993, 27(4): 467-473. |
10 | SchlenkerJ C, MalinowskiA, MartinS T, et al. Crystals formed at 293 K by aqueous sulfate- nitrate- ammonium- proton aerosol particles[J]. The Journal of Physical Chemistry A, 2004, 108(43): 9375-9383. |
11 | CruzC N, PandisS N. Deliquescence and hygroscopic growth of mixed inorganic- organic atmospheric aerosol[J]. Environmental Science and Technology, 2000, 34(20): 4313-4319. |
12 | SvenningssonB, RisslerJ, SwietlickiE, et al. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance[J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1937-1952. |
13 | PengC, ChanM N, ChanC K. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions[J]. Environmental Science and Technology, 2001, 35(22): 4495-4501. |
14 | ChoiM Y, ChanC K. The effects of organic species on the hygroscopic behaviors of inorganic aerosols[J]. Environmental Science and Technology, 2002, 36(11): 2422-2428. |
15 | KöhlerH. The nucleus in and the growth of hygroscopic droplets[J]. Transactions of the Faraday Society, 1936, 32: 1152-1161. |
16 | PettersM D, KreidenweisS M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity[J]. Atmospheric Chemistry and Physics, 2007, 7(8): 1961-1971. |
17 | ChangR Y W, SlowikJ G, ShantzN C, et al. The hygroscopicity parameter (κ) of ambient organic aerosol at a field site subject to biogenic and anthropogenic influences: relationship to degree of aerosol oxidation[J]. Atmospheric Chemistry and Physics, 2010, 10(11): 5047-5064. |
18 | FitzgeraldJ W. Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity[J]. Journal of Applied Meteorology, 1975, 14(6): 1044-1049. |
19 | YueD L, HuM, ZhangR Y, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing[J]. Atmospheric Environment, 2011, 45(33): 6070-6077. |
20 | HongJ, HäkkinenS A K, ParamonovM, et al. Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010[J]. Atmospheric Chemistry and Physics, 2014, 14(9): 4733-4748. |
21 | JacobsonM C, HanssonH C, NooneK J, et al. Organic atmospheric aerosols: review and state of the science[J]. Reviews of Geophysics, 2000, 38(2): 267-294. |
22 | SaxenaP, HildemannL M. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds[J]. Journal of Atmospheric Chemistry, 1996, 24(1): 57-109. |
23 | 吴萍, 丁一汇, 柳艳菊, 等. 中国中东部冬季霾日的形成与东亚冬季风和大气湿度的关系[J]. 气象学报, 2016, 74(3): 352-366. |
WuP, DingY H, LiuY J, et al. Influence of the East Asian winter monsoon and atmospheric humidity on the wintertime haze frequency over central-eastern China[J]. Acta Meteorologica Sinica, 2016, 74(3): 352-366. | |
24 | HuD, ChenJ, YeX, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: relative humidity and size effects on the growth factor[J]. Atmospheric Environment, 2011, 45(14): 2349-2355. |
25 | AndreaeM O, RosenfeldD. Aerosol–cloud–precipitation interactions(Ⅰ): The nature and sources of cloud-active aerosols[J]. Earth-Science Reviews, 2008, 89(1/2): 13-41. |
26 | VarutbangkulV, BrechtelF J, BahreiniR, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds[J]. Atmospheric Chemistry and Physics, 2006, 6(9): 2367-2388. |
27 | MontgomeryJ F, RogakS N, GreenS I, et al. Structural change of aerosol particle aggregates with exposure to elevated relative humidity[J]. Environmental Science and Technology, 2015, 49(20): 12054-12061. |
28 | EstilloreA D, HettiyaduraA P S, QinZ, et al. Water uptake and hygroscopic growth of organosulfate aerosol[J]. Environmental Science and Technology, 2016, 50(8): 4259-4268. |
29 | SchillG P, De HaanD O, TolbertM A. Heterogeneous ice nucleation on simulated secondary organic aerosol[J]. Environmental Science and Technology, 2014, 48(3): 1675-1682. |
30 | WangG, ZhangR, GomezM E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences, 2016, 113(48): 13630-13635. |
31 | 邓雪娇, 王新明, 赵春生, 等. 珠江三角洲典型过程VOCs的平均浓度与化学反应活性[J]. 中国环境科学, 2010, 30(9): 1153-1161. |
DengX J, WangX M, ZhaoC S, et al. The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta Region[J]. China Environmental Science, 2010, 30(9): 1153-1161. | |
32 | PrenniA J, PettersM D, KreidenweisS M, et al. Cloud droplet activation of secondary organic aerosol[J]. Journal of Geophysical Research, 2007, 112(D10): D10223. |
[1] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[2] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[3] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[4] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[5] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[6] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[7] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[8] | 刘定平, 陈爱桦, 张向阳, 何文浩, 王海. 铝灰半干法水解脱氮研究[J]. 化工学报, 2023, 74(3): 1294-1302. |
[9] | 王思琪, 顾天宇, 陈献富, 王通, 李佳, 柯威, 李小锋, 范益群. 陶瓷膜用于杜仲叶提取液澄清的分离特性与膜污染机制研究[J]. 化工学报, 2023, 74(3): 1113-1125. |
[10] | 徐银, 蔡洁, 陈露, 彭宇, 刘夫珍, 张晖. 异相可见光催化耦合过硫酸盐活化技术在水污染控制中的研究进展[J]. 化工学报, 2023, 74(3): 995-1009. |
[11] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[12] | 查坦捷, 杨涵, 秦荷杰, 关小红. 仿生材料的构建及其在水环境化学领域中的研究进展[J]. 化工学报, 2023, 74(2): 585-598. |
[13] | 许贤伦, 钱旸, 张兴旺, 雷乐成. 高压脉冲介质阻挡放电降解土壤中芘的研究[J]. 化工学报, 2022, 73(9): 4025-4033. |
[14] | 陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146. |
[15] | 葛旺鑫, 朱以华, 江宏亮, 李春忠. 二氧化碳电还原的电解质研究进展[J]. 化工学报, 2022, 73(8): 3433-3447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||