化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2795-2801.DOI: 10.11949/0438-1157.20190112
冯可1(),王玥1,李金华1(
),楚学影1,胡思怡2,林志远1
收稿日期:
2019-02-11
修回日期:
2019-05-06
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
李金华
作者简介:
冯可(1992—),男,硕士研究生,<email>463343632@qq.com</email>
基金资助:
Ke FENG1(),Yue WANG1,Jinhua LI1(
),Xueying CHU1,Siyi HU2,Zhiyuan LIN1
Received:
2019-02-11
Revised:
2019-05-06
Online:
2019-07-05
Published:
2019-07-05
Contact:
Jinhua LI
摘要:
CdSe量子棒是一种具有良好光学特性的半导体纳米材料,不同长径比的量子棒可应用于光电材料及器件制备。采用高温油相合成法制备CdSe量子棒,在只改变前体反应时间的前提下,探究其对于CdSe量子棒长径比的变化机理并对其光学特性进行对比分析。实验结果表明CdSe量子棒随着反应时间的增长粒径增大并且发射峰的峰位产生了红移的现象。通过透射电子显微镜表征后发现量子棒随着前体反应时间的增加长度逐渐变长,长径比逐渐变大。因此可以用该方法可以控制量子棒的生长。
中图分类号:
冯可, 王玥, 李金华, 楚学影, 胡思怡, 林志远. Cd2+前体反应时间对CdSe量子棒长径比的调控及其光学特性研究[J]. 化工学报, 2019, 70(7): 2795-2801.
Ke FENG, Yue WANG, Jinhua LI, Xueying CHU, Siyi HU, Zhiyuan LIN. Regulation of Cd2+ precursor reaction time on aspect ratio of CdSe quantum rod and its optical properties[J]. CIESC Journal, 2019, 70(7): 2795-2801.
Cd2+前体反应时间/h | 长轴/nm | 短轴/nm | 长径比 |
---|---|---|---|
0 | 10.21±1.32 | 3.55±0.52 | 2.87±0.23 |
8 | 10.40±1.80 | 3.41±0.53 | 3.05±0.10 |
16 | 12.03±1.72 | 3.84±0.55 | 3.13±0.12 |
20 | 14.45±1.77 | 4.60±0.59 | 3.14±0.17 |
24 | 16.23±1.92 | 4.76±0.65 | 3.41±0.16 |
31 | 18.41±2.22 | 4.93±0.74 | 3.73±0.20 |
表1 不同反应时间Cd2+前体制备的CdSe量子棒的长径比
Table 1 Length-diameter ratio of CdSe quantum rods prepared by Cd2+ precursors with different reaction time
Cd2+前体反应时间/h | 长轴/nm | 短轴/nm | 长径比 |
---|---|---|---|
0 | 10.21±1.32 | 3.55±0.52 | 2.87±0.23 |
8 | 10.40±1.80 | 3.41±0.53 | 3.05±0.10 |
16 | 12.03±1.72 | 3.84±0.55 | 3.13±0.12 |
20 | 14.45±1.77 | 4.60±0.59 | 3.14±0.17 |
24 | 16.23±1.92 | 4.76±0.65 | 3.41±0.16 |
31 | 18.41±2.22 | 4.93±0.74 | 3.73±0.20 |
图7 不同反应时间Cd2+前体制备的CdSe量子棒的发射光谱及其归一化发射光谱
Fig.7 Emission spectra and normalized emission spectra of CdSe quantum rod prepared by Cd2+ precursors with different reaction time
图8 不同反应时间Cd2+前体制备的CdSe量子棒的吸收光谱及其归一化吸收光谱
Fig.8 Absorption spectra and normalization of CdSe quantum rod prepared by Cd2+ precursors with different reaction time
1 | XiongL, DaiJ, SongY, et al. Effects of doping on photoelectrical properties of one-dimensional α-Si3N4 nanomaterials: a first-principles study[J]. Physica B: Condensed Matter, 2018, 550: 32-38. |
2 | SunY Y, ZongZ M, LiZ K, et al. Seed-assisted thermal growth of one-dimensional TiO2, nanomaterials on carbon fibers[J]. Ceramics International, 2017, 43(3): 3171-3176. |
3 | MalhotraA, MaldovanM. Thermal transport in semiconductor nanotubes[J]. International Journal of Heat and Mass Transfer, 2019, 130: 368-374. |
4 | Zúñiga, A, FonsecaL, SouzaJ A, et al. Anomalous ferromagnetic behavior and size effects in CuO nanowires[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 77-81. |
5 | 王保玉, 张景会, 刘湛鋆.TiO2纳米管的制备与表征[J]. 精细化工,2003, 20(6): 333-336. |
WangB Y , ZhangJ H , LiuZ J. Preparation and characterization of TiO2 nanotubes[J]. Fine Chemicals,2003, 20(6): 333-336. | |
6 | BruchezJ M. Semiconductor nanocrystals as fluorescent biological labels[J]. Science, 1998, 281(5385): 2013-2016. |
7 | ShipwayA N, KatzE, WillnerI. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications[J]. ChemPhysChem, 2015, 1(1): 18-52. |
8 | HuynhW U, DittmerJ J, AlivisatosA P. Hybrid nanorod-polymer solar cells[J]. Science, 2002, 295(5564): 2425-2427 |
9 | 冯启彪. CdSe量子点的合成、表征及其应用研究[D]. 杭州: 浙江大学, 2006. |
FengQ B. Synthesis, characterization and application of CdSe quantum dots[D]. Hangzhou: Zhejiang University, 2006 | |
10 | 付红红, 栾伟玲, 袁斌霞, 等. 纳米晶/聚合物太阳能电池[J]. 化学进展, 2012, 24(9): 1837-1844. |
FuH H, LuanW L, YuanB X, et al. Nanocrystal/polymer solar cell[J]. Progress in Chemistry, 2012, 24(9): 1837-1844. | |
11 | 谢闯. CdSe纳米晶体的研究[D]. 天津: 天津大学, 2007. |
XieC. The study on the CdSe nanocrystals[D]. Tianjin: Tianjin University, 2007. | |
12 | ZhangX, XiaJ. Linear-polarization optical property of CdSe quantum rods[J]. Chinese Journal of Semiconductors, 2006, 27(12): 2094-2100. |
13 | ChenJ, ZhuL, LiZ. Manipulation of the overall polarization orientation in the focal volume of high numerical objectives[J]. Chinese Optics Letters, 2017, 16(1): 010501. |
14 | ZhouJ J, ChenG X, WuE, et al. Ultrasensitive polarized up-conversion of Tm3+–Yb3+ doped β-NaYF4 single nanorod[J]. Nano Letters, 2013, 13(5): 2241-2246. |
15 | JuS E, KimJ. Quantum dot light-emitting diodes employing phosphorescent organic molecules as double emission layers[J]. Electronic Materials Letters, 2019,15(11): 1-5. |
16 | ChoiS, MoonJ, ChoH, et al. Partially pyridine-functionalized quantum dots for efficient red, green, and blue light-emitting diodes[J]. Journal of Materials Chemistry C, 2019, 7(12): 3429-3435. |
17 | RastogiP, PalazonF, PratoM, et al. Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5665. |
18 | PengX, MannaL, YangW, et al. Shape control of CdSe nanocrystals[J]. Nature, 2000, 404(6773): 59-61. |
19 | 米阿敏, 薛晋波, 申倩倩, 等. 长径比可控的CdS纳米棒制备及光催化性能研究[J]. 人工晶体学报, 2015, 44(6): 1586-1590. |
MiA M, XueJ B, ShenQ Q, et al. Preparation and photocatalytic performance of controllable aspect ratio of CdS nanorods[J]. Journal of Synthetic Crystals, 2015, 44(6): 1586-1590. | |
20 | MannaL, ScherE C, LiL S, et al. Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods[J]. Journal of the American Chemical Society, 2002, 124(24): 7136-45. |
21 | WisherA C, BronsteinI, ChechikV. Thiolated PAMAM dendrimer-coated CdSe/ZnSe nanoparticles as protein transfection agents[J]. Chemical Communications, 2006, 15(15): 1637-1639. |
22 | PradhanS, ChenS, WangS, et al. Photo-gated charge transfer of organized assemblies of CdSe quantum dots[J]. Langmuir, 2006, 22(2): 787-793. |
23 | WongE M, HoertzP G, LiangC J, et al. Influence of organic capping ligands on the growth kinetics of ZnO nanoparticles[J]. Langmuir, 2001, 17(26): 8362-8367. |
24 | YinY, AlivisatosA P. Colloidal nanocrystal synthesis and the organic-inorganic interface[J]. Nature, 2005, 437(7059): 664-670. |
25 | PengX, ThessingJ. Controlled Synthesis of High Quality Semiconductor Nanocrystals[M]//Semiconductor Nanocrystals and Silicate Nanoparticles. Springer Berlin Heidelberg, 2005: 79-119. |
26 | PengZ A, PengX. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth[J]. Journal of the American Chemical Society, 2002, 124(13): 3343-3353. |
27 | WangW, BanerjeeS, JiaS, et al. Ligand control of solubility and capping structure of colloidal CdSe nanorods[J]. Chemistry of Materials, 2007, 19(10): 2573-2580. |
28 | 马保国, 高超, 苏英,等. 反应物浓度与反应时间对高强石膏前驱体制备的影响[J]. 硅酸盐通报, 2017, 36(10): 3237-3242. |
MaB G, GaoC, SuY, et al. Influence of reactant concentration and reaction time on high-strength gypsum precursors synthesis[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3237-3242. | |
29 | BrusL. Electronic wave functions in semiconductor clusters: experiment and theory[J]. Journal of Physical Chemistry, 1986, 90(12): 2555-2560. |
30 | ScherE C, MannaL, AlivisatosA P. Shape control and applications of nanocrystals[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2003, 361(1803): 241-257. |
31 | KimJ, WongC Y, ScholesG D. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots[J]. ACC Chem. Res., 2009, 42(8): 1037-1046. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[8] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[11] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[12] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[13] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[14] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[15] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 393
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||