1 |
Kuhn S, Noel T, Gu L, et al. A teflon microreactor with integrated piezoelectric actuator to handle solid forming reactions[J]. Lab on a Chip, 2011, 11(15): 2488-2492.
|
2 |
Kang E, Shin S J, Lee K H, et al. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles[J]. Lab on a Chip, 2010, 10(14): 1856-1861.
|
3 |
Fu T T, Ma Y G, Funfschilling D, et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device[J]. Chemical Engineering Science, 2009, 64(10): 2392-2400.
|
4 |
李根浩, 袁希钢, 宋文琦. 捕捉微通道内Taylor流特性的一种渐变网格划分方法[J]. 化学工业与工程, 2016, 33(5): 86-95.
|
|
Li G H, Yuan X G, Song W Q. Gradient mesh approach for capturing characteristics of gas-liquid Taylor flow in microchannels[J]. Chemcial Industry and Engineering, 2016, 33(5): 86-95.
|
5 |
Hessel V, Löwe H, Schönfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science, 2005, 60(8/9): 2479-2501.
|
6 |
Zhao Y C, Yao C Q, Chen G W, et al. Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor[J]. Green Chemistry, 2013, 15: 446-452.
|
7 |
Wang X D, Zhu C Y, Wu Y N, et al. Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction[J]. Chemical Engineering Science, 2015, 18: 128-138.
|
8 |
荀涛, 蔡旺锋, 张旭斌. 微通道中气-液-液三相流流型及传质研究[J]. 化学工业与工程, 2017, 34(6): 81-87.
|
|
Xun T, Cai W F, Zhang X B. The flow pattern and mass transfer of gas-liquid-liquid three phase flow in microchannel[J]. Chemical Industry and Engineering, 2017, 34(6): 81-87.
|
9 |
尧超群, 乐军, 赵玉潮, 等. 微通道内气液弹状流动及传质特性研究进展[J]. 化工学报, 2015, 66(8): 2759-2766.
|
|
Yao C Q, Yue J, Zhao Y C, et al. Review on flow and mass transfer characteristics of gas-liquid slug flow in microchannels[J]. CIESC Journal, 2015, 66(8): 2759-2766.
|
10 |
Ye Y, Yu S, Hou L, et al. Microbubble aeration enhances performance of vacuum membrane distillation desalination by alleviating membrane scaling[J]. Water Research, 2019, 149: 588-595.
|
11 |
Yu P, Wang J, Chen J, et al. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals[J]. Science of the Total Environment, 2019, 663: 654-661.
|
12 |
Malloggi F, Pannacci N, Attia R, et al. Monodisperse colloids synthesized with nanofluidic technology[J]. Langmuir, 2010, 26(4): 2369-2373.
|
13 |
Wang X Y, Riaud A, Wang K, et al. Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel[J]. Microfluid Nanofluid, 2015, 18: 503-512.
|
14 |
Wang W, Zhang M J, Chu L Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions[J].Accounts of Chemical Research, 2014, 47(2): 373-384.
|
15 |
赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 12-21.
|
|
Zhao S L, Wang L Y, Wu S G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 12-21
|
16 |
Cheng Y, Wang Y, Ma Z, et al. A bubble- and clogging-free microfluidic particle separation platform with multi-filtration[J]. Lab on a Chip, 2016, 16(23): 4517-4526.
|
17 |
An H, Chen L, Liu X. A method of manufacturing microfluidic contact lenses by using irreversible bonding and thermoforming[J]. Journal of Micromechanics and Microengineering, 2018, 28(10): 105008.
|
18 |
王彦, 王靖涛.微流控技术制备聚酰胺微胶囊的工艺研究[J]. 化学工业与工程, 2018, 35(6): 20-25.
|
|
Wang Y, Wang J T. Preparation of polyamide microcapsules based on microfluidics[J]. Chemical Industry and Engineering, 2018, 35(6): 20-25.
|
19 |
Yamada M, Seki M. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics[J]. Lab on a Chip, 2005, 5(11): 1233-1239.
|
20 |
Hartman R L, Naber J R, Zaborenko N. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C—N bond formation in microreactors[J]. Organic Process Research & Development, 2010, 14: 1347-1357.
|
21 |
李韡, 张昱, 孟昊, 等. 微通道中液-液萃取传质特性的研究[J]. 化学工业与工程, 2013, 30(4): 36-41.
|
|
Li W, Zhang Y, Meng H, et al. Mass transfer characteristics of liquid-liquid extraction in microchannel[J]. Chemcial Industry and Engineering, 2013, 30(4): 36-41.
|
22 |
Poe S L, Cummings M A, Haaf M P, et al. Solving the clogging problem: precipitate-forming reactions in flow[J]. Angewandte Chemie, 2006, 45(10): 1544-15448.
|
23 |
Shao N, Gavriilidis A, Angeli P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science, 2009, 64(11): 2749-2761.
|
24 |
Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles[J]. Lab on a Chip, 2008, 8(2): 287-293.
|
25 |
Lorenz R M, Fiorini G S, Jeffries G D. Simultaneous generation of multiple aqueous droplets in a microfluidic device[J]. Analytica Chimica Acta, 2008, 630(2): 124-130.
|
26 |
Sullivan M T, Stone H A. The role of feedback in microfluidic flow-focusing devices[J]. Philosophical Transactions - Royal Society. Mathematical, Physical and Engineering Sciences, 2008, 366(1873): 2131-2143.
|
27 |
Hashimoto M, Shevkoplyas S S, Zasonska B, et al. Formation of bubbles and droplets in parallel, coupled flow-focusing geometries[J]. Small, 2008, 4(10): 1795-1805.
|
28 |
Barbier V, Willaime H, Tabeling P, et al. Producing droplets in parallel microfluidic systems[J]. Phys. Rev. E, 2006, 744 Pt 2): 046306.
|
29 |
Bolaños-Jiménez R, Sevilla A, Martínez-Bazán C. The effect of liquid viscosity on bubble pinch-off[J]. Physics of Fluids, 2009, 21(7): 072103.
|
30 |
Postek W, Kaminski T S, Garstecki P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample[J]. Lab on a Chip, 2017, 17(7): 1323-1331.
|
31 |
Li Z, Leshansky A M, Metais S, et al. Step-emulsification in a microfluidic device[J]. Lab on a Chip, 2015, 15(4): 1023-1031.
|
32 |
Stoffel M, Wahl S, Lorenceau E, et al. Bubble production mechanism in a microfluidic foam generator[J]. Phys. Rev. Lett., 2012, 108(19): 198302.
|
33 |
Mittal N, Cohen C, Bibette, et al. Dynamics of step-emulsification: from a single to a collection of emulsion droplet generators[J]. Physics of Fluids, 2014, 26(8): 082109.
|
34 |
Eggersdorfer M L, Seybold H, Ofner A. Wetting controls of droplet formation in step emulsification[J]. Proc. Natl. Acad. Sci. USA, 2018, 15(38): 9479-9484.
|
35 |
Sugiura S, Nakajima M, Iwamoto S, et al. Interfacial tension driven monodispersed droplet formation from microfabricated channel array[J]. Langmuir, 2001, 17(18): 5562-5566.
|
36 |
沈秋颖, Faran T M, José C A, 等. 对称分支并行微通道中气液两相流的均匀性规律[J]. 化工学报, 2018, 69(11): 4640-4647.
|
|
Shen Q Y, Faran T M, José C A, et al. Uniformity of gas-liquid two-phase flow in symmetrical parallelized branching microchannels[J]. CIESC Journal, 2018, 69(11): 4640-4647.
|
37 |
张翀, 付涛涛, 姜韶堃, 等. 聚焦十字型微通道内高黏流体中气泡生成动力学[J]. 化工学报, 2018, 69(2): 650-654.
|
|
Zhang C, Fu T T, Jiang S K, et al. Bubble forming dynamics of highly viscous fluids in microfluidic flow focusing cross channel device[J]. CIESC Journal, 2018, 69(2): 650-654.
|
38 |
付涛涛, 惠晓荣, 朱春英, 等. 十字型微通道内气泡形成的实验观察[J]. 高校化学工程学报, 2011, 25(2): 0337-0344.
|
|
Fu T T, Hui X R, Zhu C Y, et al. Formation of dispersed small bubbles in flow-focusing microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(2): 0337-0344.
|
39 |
van Dijke K, Kobayashi I, Schroën K, et al. Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification[J]. Microfluidics and Nanofluidics, 2009, 9(1): 77-85.
|
40 |
Lucassen-Rzynders E H, Kuijpers K A. The role of interfacial properties in emulsification[J]. Colloids and Surfaces, 1992, 65: 175-184.
|