化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3329-3341.DOI: 10.11949/0438-1157.20230632
收稿日期:
2023-06-27
修回日期:
2023-08-14
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
云和明
作者简介:
刘文竹(1999—),女,硕士研究生,lwenzhu0503@163.com
基金资助:
Wenzhu LIU(), Heming YUN(), Baoxue WANG, Mingzhe HU, Chonglong ZHONG
Received:
2023-06-27
Revised:
2023-08-14
Online:
2023-08-25
Published:
2023-10-18
Contact:
Heming YUN
摘要:
基于双目标拓扑优化方法,对五种不同设计域长宽比的微通道结构进行了优化设计,获得各工况下的优化设计变量场、温度场及压力场。在此基础上,研究了不同Reynolds数对散热通道的影响,并结合场协同原理和耗散理论对不同结构的微通道进行理论分析和比较,为优化微通道结构提供理论依据。结果表明:在层流范围内,随着Reynolds数增加,拓扑流道变得更加复杂,域内平均温度逐渐降低,Nu增大,进出口压降逐渐升高,PEC逐渐减小,场协同数增大,压降协同角逐渐增大,耗散增大,各散热通道的流动传热特性趋于优化。在不同拓扑结构微通道的探究中,设计域长宽比为25/64微通道的速度场与温度场协同效果及速度场与压力场协同效果最好,传热效果最好,流动特性最优。
中图分类号:
刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341.
Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation[J]. CIESC Journal, 2023, 74(8): 3329-3341.
1 | 过增元. 国际传热研究前沿: 微细尺度传热[J]. 力学进展, 2000, 30(1): 1-6. |
Guo Z Y. Frontier of heat transfer—microscale heat transfer[J]. Advances in Mechanics, 2000, 30(1): 1-6. | |
2 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
3 | Ansari D, Kim K Y. Performance analysis of double-layer microchannel heat sinks under non-uniform heating conditions with random hotspots[J]. Micromachines, 2017, 8(2): 54. |
4 | Lei Y C, Mudawar I, Chen Z Q. Computational and experimental investigation of condensation flow patterns and heat transfer in parallel rectangular micro-channels[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119158. |
5 | Osman O S, El-Zoheiry R M, Elsharnoby M, et al. Performance enhancement and comprehensive experimental comparative study of cold plate cooling of electronic servers using different configurations of mini-channels flow[J]. Alexandria Engineering Journal, 2021, 60(5): 4451-4459. |
6 | Hoang C H, Fallahtafti N, Rangarajan S, et al. Impact of fin geometry and surface roughness on performance of an impingement two-phase cooling heat sink[J]. Applied Thermal Engineering, 2021, 198: 117453. |
7 | Deng D X, Wan W, Tang Y, et al. Experimental and numerical study of thermal enhancement in reentrant copper microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 91: 656-670. |
8 | 翟玉玲, 夏国栋, 刘献飞, 等. 复杂结构微通道热沉液体强化传热过程的热力学分析[J]. 化工学报, 2014, 65(9): 3403-3409. |
Zhai Y L, Xia G D, Liu X F, et al. Thermodynamic analysis of enhanced heat transfer process in microchannel heat sinks with complex structure[J]. CIESC Journal, 2014, 65(9): 3403-3409. | |
9 | Wang H T, Chen Z H, Gao J G. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks[J]. Applied Thermal Engineering, 2016, 107: 870-879. |
10 | Alfaryjat A A, Mohammed H A, Adam N M, et al. Influence of geometrical parameters of hexagonal, circular, and rhombus microchannel heat sinks on the thermohydraulic characteristics[J]. International Communications in Heat and Mass Transfer, 2014, 52: 121-131. |
11 | Ryu J H, Choi D H, Kim S J. Three-dimensional numerical optimization of a manifold microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2003, 46(9): 1553-1562. |
12 | Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224. |
13 | Borrvall T, Petersson J. Topology optimization of fluids in Stokes flow[J]. International Journal for Numerical Methods in Fluids, 2003, 41(1): 77-107. |
14 | 李昊, 丁晓红, 景大雷. 液冷通道分布优化设计的仿真和试验研究[J]. 机械工程学报, 2019, 55(10): 198-206. |
Li H, Ding X H, Jing D L. Experimental and numerical investigation of fluid cooling channel layout designed by topology optimization[J]. Journal of Mechanical Engineering, 2019, 55(10): 198-206. | |
15 | 陈祥, 刘辛军. 基于RAMP插值模型结合导重法求解拓扑优化问题[J]. 机械工程学报, 2012, 48(1): 135-140. |
Chen X, Liu X J. Solving topology optimization problems based on RAMP method combined with guide-weight method[J]. Journal of Mechanical Engineering, 2012, 48(1): 135-140. | |
16 | Okkels F, Bruus H. Scaling behavior of optimally structured catalytic microfluidic reactors[J]. Physical Review E, 2007, 75: 016301. |
17 | Yaji K, Yamada T, Yoshino M, et al. Topology optimization in thermal-fluid flow using the lattice Boltzmann method[J]. Journal of Computational Physics, 2016, 307: 355-377. |
18 | 陈帆. 电池热管理系统中冷板流道的拓扑优化设计研究[D]. 镇江: 江苏科技大学, 2022. |
Chen F. Topology optimization design of cold plate runner in battery thermal management system[D]. Zhenjiang: Jiangsu University of Science and Technology, 2022. | |
19 | Matsumori T, Kondoh T, Kawamoto A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[J]. Structural and Multidisciplinary Optimization, 2013, 47(4): 571-581. |
20 | Lv Y, Liu S. Topology optimization and heat dissipation performance analysis of a micro-channel heat sink[J]. Meccanica, 2018, 53(15): 3693-3708. |
21 | Zou A Q, Chuan R, Qian F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2022, 207: 118128. |
22 | Xia Y, Chen L, Luo J W, et al. Numerical investigation of microchannel heat sinks with different inlets and outlets based on topology optimization[J]. Applied Energy, 2023, 330: 120335. |
23 | 过增元, 魏澍, 程新广. 换热器强化的场协同原则[J]. 科学通报, 2003, 48(22): 2324-2327. |
Guo Z Y, Wei S, Cheng X G. Field synergy principle of heat exchanger strengthening[J]. Chinese Science Bulletin, 2003, 48(22): 2324-2327. | |
24 | Guo Z Y, Zhu H Y, Liang X G. Entransy—a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007, 50(13/14): 2545-2556. |
25 | 王定标, 王帅, 张浩然, 等. 流体拓扑优化的方法及应用综述[J]. 郑州大学学报(工学版), 2023, 44(2): 1-13. |
Wang D B, Wang S, Zhang H R, et al. Summary of methods and applications of fluid topology optimization[J]. Journal of Zhengzhou University(Engineering Science), 2023, 44(2): 1-13. | |
26 | 陈金彪. 散热器冷却通道拓扑优化设计及实验研究[D]. 西安: 西安电子科技大学, 2021. |
Chen J B. Topology optimization design and experimental study of radiator cooling channel[D]. Xi’an: Xidian University, 2021. | |
27 | Li H, Ding X H, Meng F Z, et al. Optimal design and thermal modelling for liquid-cooled heat sink based on multi-objective topology optimization: an experimental and numerical study[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118638. |
28 | Zhang B, Zhu J H, Gao L M. Topology optimization design of nanofluid-cooled microchannel heat sink with temperature-dependent fluid properties[J]. Applied Thermal Engineering, 2020, 176: 115354. |
29 | Lazarov B S, Sigmund O. Filters in topology optimization based on Helmholtz‐type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. |
30 | Zhang T T, Fu Y L, Yang X Q, et al. A pseudo 3D cooling heat sink model designed by multi-objective topology optimization method[J]. Meccanica, 2022, 57(8): 2101-2116. |
31 | Zhou J H, Lu M X, Zhao Q, et al. Thermal design of microchannel heat sinks using a contour extraction based on topology optimization (CEBTO) method[J]. International Journal of Heat and Mass Transfer, 2022, 189: 122703. |
32 | Fan J F, Ding W K, Zhang J F, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving[J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33-44. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 256
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||