化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3791-3807.DOI: 10.11949/0438-1157.20190701
收稿日期:
2019-06-21
修回日期:
2019-07-19
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
钟文琪
作者简介:
刘沁雯(1995—),女,博士研究生,基金资助:
Qinwen LIU(),Wenqi ZHONG(),Yingjuan SHAO,Aibing Yu
Received:
2019-06-21
Revised:
2019-07-19
Online:
2019-10-05
Published:
2019-10-05
Contact:
Wenqi ZHONG
摘要:
二氧化碳捕集与利用是全球学术界和工业界关注的热点,也是燃烧科学技术领域的前沿和难点。固体燃料的流化床富氧燃烧耦合了流化床燃烧和富氧燃烧的诸多优点,是最具工业应用前景的燃烧中碳捕集技术之一。为更全面把握该领域最新动态,对近年来流化床富氧燃烧的研究进行了系统梳理,在简述富氧燃烧基本技术原理基础上,分析了国内外的研究动态,总结了主要研究进展,包括单一燃料流化床富氧燃烧、混合燃料流化床富氧燃烧、加压流化床富氧燃烧和新型流化床富氧燃烧,并探讨了固体燃料流化床富氧燃烧技术将来发展趋势和研究重点。
中图分类号:
刘沁雯,钟文琪,邵应娟. 固体燃料流化床富氧燃烧的研究动态与进展[J]. 化工学报, 2019, 70(10): 3791-3807.
Qinwen LIU,Wenqi ZHONG,Yingjuan SHAO,Aibing Yu. Research trends and recent advances of oxy-fuel combustion of solid fuels in fluidized beds[J]. CIESC Journal, 2019, 70(10): 3791-3807.
1 | BP. BP Statistical Review of World Energy [R]. London: BP, 2018. |
2 | Global Carbon Project. Global Carbon Budget[R]. Katowice: GCP2018. |
3 | WolskyA M, DanielsE J, JodyB J. Recovering CO2 from large-and medium-size stationary combustors[J]. Air & Waste Management Association, 1991, (41): 449-454. |
4 | HerzogH, GolombD, ZembaS. Feasibility, modeling and economics of sequestering power plant CO emissions in the deep ocean[J]. Environmental Progress & Sustainable Energy, 2010, 10(1): 64-74. |
5 | GotoK, YogoK, HigashiiT. A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture[J]. Applied Energy, 2013, 111: 710-720. |
6 | LiszkaM, ZiebikA. Coal-fired oxy-fuel power unit—process and system analysis[J]. Energy, 2010, 35(2): 943-951. |
7 | 郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23): 3856-3864. |
ZhenC G, ZhaoY C, GuoX. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23): 3856-3864. | |
8 | RohanS, TerryW, ManojP, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control, 2015, 40: 55-125. |
9 | ChenL, YongS Z, GhoniemA F. Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling[J]. Progress in Energy and Combustion Science, 2012, 38(2): 156-214. |
10 | MathekgaH I, OboirienB O, NorthB C. A review of oxy-fuel combustion in fluidized bed reactors[J]. International Journal of Energy Research, 2016, 40(7): 878-902. |
11 | SinghR I, KumarR. Current status and experimental investigation of oxy-fired fluidized bed[J]. Renewable and Sustainable Energy Reviews, 2016, 61: 398-420. |
12 | LupionM, AlvarezI, OteroP, et al. 30 MWth CIUDEN oxy-CFB boiler-first experiences[J]. Energy Procedia, 2013, 37: 6179-6188. |
13 | LupionM, NavarreteB, OteroP, et al. Experimental programme in CIUDEN’s CO2 capture technology development plant for power generation[J]. Chemical Engineering Research & Design, 2011, 89(9): 1494-1500. |
14 | LupionM, DiegoR, LoubeauL, et al. CIUDEN CCS project: status of the CO2 capture technology development plant in power generation[J]. Energy Procedia, 2011, 4: 5639-5646. |
15 | BéalC, PerezE, MorinJ, et al. Public Summary Report of ENCAP deliverable D-3.4. 4; Feasibility Study of an Integrated 445 MWe Oxy-fuel CFB Supercritical Boiler[R]. ENCAP. |
16 | GómezM, FernándezA, LlavonaI, et al. Reprint of “Experiences in sulphur capture in a 30 MWth circulating fluidized bed boiler under oxy-combustion conditions”[J]. Applied Thermal Engineering, 2015, 74: 69-74. |
17 | KariM, RuthD, ReijoK, et al. Modelling supported development of oxy-CFB combustion[J]. Energy Procedia, 2017, 114: 589-599. |
18 | SadeghS K, DavidP, FredrikN, et al. Heat transfer in a 4MWth circulating fluidized bed furnace operated under oxy-fired and air-fired conditions: modeling and measurements[J]. International Journal of Greenhouse Gas Control, 2015, 37: 264-273. |
19 | 卜昌盛, 庄亚明, 刘道银, 等. 单颗粒流化床富氧燃烧特性研究[J]. 工程热物理学报, 2015, 36(5): 1143-1147. |
BoC S, ZhuangY M, LiuD Y, et al. Fluidized bed combustion of a single coal particle in oxy-fuel enviornment[J]. Journal of Engineering Thermophysics, 2015, 36(5): 1143-1147. | |
20 | LiS Y, LiW, XuM X, et al. The experimental study on nitrogen oxides and SO2 emission for oxy-fuel circulation fluidized bed combustion with high oxygen concentration[J]. Fuel, 2015, 146: 81-87. |
21 | XuM, LiS, LiW, et al. Effects of gas staging on the NO emission during O2/CO2 combustion with high oxygen concentration in circulating fluidized bed[J]. Energy & Fuels, 2015, 29(5): 3302-3311. |
22 | WangH, ZhengZ M, YangL, et al. Experimental investigation on ash deposition of a bituminous coal during oxy-fuel combustion in a bench-scale fluidized bed[J]. Fuel Processing Technology, 2015, 132: 24-30. |
23 | ZhengZ, WangH, YangL, et al. Comparative study on SO2 release and removal under air and oxy-fuel combustion in a fluidized bed combustor[J]. Journal of Southeast University (English Edition), 2015, 31(2): 232-237. |
24 | 李伟, 李诗媛, 徐明新, 等. 循环流化床富氧燃烧NO和N2O的排放特性[J]. 燃烧科学与技术, 2015, 21(4): 307-312. |
LiW, LiS Y, XuM X, et al. NO and N2O emission characteristics of oxy-fuel circulating fluidized bed combustion[J]. Journal of Combustion Science and Technology, 2015, 21(4): 307-312. | |
25 | DuanL B, ZhaoC S, ZhouW, et al. O2/CO2 coal combustion characteristics in a 50 kWth circulating fluidized bed[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 770-776. |
26 | LiW, XuM X, LiS Y. Calcium sulfation characteristics at high oxygen concentration in a 1 MWth pilot scale oxy-fuel circulating fluidized bed[J]. Fuel Processing Technology, 2018, 171: 192-197. |
27 | SkopecP, HrdličKaJ, VodičkaM, et al. Combustion of lignite coal in a bubbling fluidized bed combustor under oxyfuel conditions[J]. Energy Procedia, 2017, 114: 600-607. |
28 | HughesR W, LuD Y, SymondsR T, et al. Improvement of oxy-FBC using oxygen carriers: concept and combustion performance[J]. Energy & Fuels, 2017, 31: 10101-10115. |
29 | MoonJ H, JoS H, ParkS J, et al. Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed[J]. Energy, 2019, 166: 183-192. |
30 | BuC S, Gómez-BareaA, LecknerB, et al. Oxy-fuel conversion of sub-bituminous coal particles in fluidized bed and pulverized combustors[J]. Proceedings of the Combustion Institute, 2017, 36: 3331-3339. |
31 | BuC S, PallarèsD, ChenX P, et al. Oxy-fuel combustion of a single fuel particle in a fluidized bed: char combustion characteristics, an experimental study[J]. Chemical Engineering Journal, 2016, 287: 649-656. |
32 | WangW K, BuC S, Gómez-BareaA, et al. O2/CO2 and O2/N2 combustion of bituminous char particles in a bubbling fluidized bed under simulated combustor conditions[J]. Chemical Engineering Journal, 2018, 336: 74-81. |
33 | MathekgaH I, OboirienB O, EngelbrechtA, et al. Performance evaluation of south African coals under oxy-fuel combustion in a fluidized bed reactor[J]. Energy & Fuels, 2016, 30: 6756-6763. |
34 | GövertB, PielstickerS, KreitzbergT, et al. Measurement of reaction rates for pulverized fuel combustion in air and oxyfuel atmosphere using a novel fluidized bed reactor setup[J]. Fuel, 2017, 201: 81-92. |
35 | SalineroJ, Gómez-BareaA, Fuentes-CanoD, et al. The influence of CO2 gas concentration on the char temperature and conversion during oxy-fuel combustion in a fluidized bed[J]. Applied Energy, 2018, 215: 116-130. |
36 | DuanL B, LiL, LiuD L, et al. Fundamental study on fuel-staged oxy-fuel fluidized bed combustion[J]. Combustion and Flame, 2019, 206: 227-238. |
37 | LiL, DuanL B, TongS, et al. Combustion characteristics of lignite char in a fluidized bed under O2/N2, O2/CO2 and O2/H2O atmospheres[J]. Fuel Processing Technology, 2019, 186: 8-17. |
38 | VodičkaM, HaugenN E, GruberA, et al. NOx formation in oxy-fuel combustion of lignite in a bubbling fluidized bed- modelling and experimental verification[J]. International Journal of Greenhouse Gas Control, 2018, 76: 208-214. |
39 | de las Obras-LoscertalesM , IzquierdoM T , RufasA , et al. The fate of mercury in fluidized beds under oxy-fuel combustion conditions[J]. Fuel, 2016, 167: 75-81. |
40 | IzquierdoM T, de las Obras-LoscertalesM, de DiegoL F, et al. Mercury emissions from coal combustion in fluidized beds under oxy-fuel and air conditions: influence of coal characteristics and O2 concentration[J]. Fuel Processing Technology, 2017, 167: 695-701. |
41 | RoyB, BhattacharyaS. Ash characteristics during oxy-fuel fluidized bed combustion of a Victorian brown coal[J]. Powder Technology, 2016, 288: 1-5. |
42 | RoyB, BhattacharyaS. Release behavior of Hg, Se, Cr and As during oxy-fuel combustion using Loy Yang brown coal in a bench-scale fluidized bed unit[J]. Powder Technology, 2016, 302: 328-332. |
43 | RoyB, BhattacharyaS. Combustion of single char particles from Victorian brown coal under oxy-fuel fluidized bed conditions[J]. Fuel, 2016, 165: 477-483. |
44 | SarbassovY, DuanL B, JeremiasMichal, et al. SO3 formation and the effect of fly ash in a bubbling fluidized bed under oxy-fuel combustion conditions[J]. Fuel Processing Technology, 2017, 167: 314-321. |
45 | XuM X, LiS Y, WuY H, et al. Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: effects of operating parameters[J]. Applied Energy, 2017, 199: 310-322. |
46 | XuM X, LiS Y, WuY H, et al. The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion[J]. Applied Energy, 2017, 190: 553-562. |
47 | ZhuS J, LyuQ G, ZhuJ G, et al. NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution[J]. Fuel Processing Technology, 2018, 182: 104-112. |
48 | LiW, LiS Y, XuM S, et al. Study on the limestone sulfation behavior under oxy-fuel circulating fluidized bed combustion condition[J]. Journal of the Energy Institute, 2018, 91: 358-368. |
49 | LiW, LiuD B, LiS Y. Characteristics of fly ash under oxy-fuel circulating fluidized bed combustion[J]. Energy Fuels, 2018, 32: 9666-9671. |
50 | XuM S, LiS Y. Experimental study on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed[J]. Journal of the Energy Institute, 2019, 92: 128-135. |
51 | LiS Y, XuM X, JiaL F, et al. Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed[J]. Applied Energy, 2016, 173: 197-209. |
52 | LiS Y, LiH Y, LiW, et al. Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1 MWth pilot-scale oxy-fuel circulating fluidized bed[J]. Applied Energy, 2017, 197: 203-211. |
53 | WangH, DuanY F, LiY N, et al. Inner relationship between CO, NO, and Hg in a 6 kWth circulating fluidized bed combustor under an O2/CO2 atmosphere[J]. Energy & Fuels, 2016, 30(5): 4221-4228. |
54 | WangH , DuanY F, LiY N , et al. Experimental study on mercury oxidation in a fluidized bed under O2/CO2 and O2/N2 atmospheres[J]. Energy & Fuels, 2016, 30(6): 5065-5070. |
55 | WangH , DuanY F, LiY N , et al. Investigation of mercury emission and its speciation from an oxy-fuel circulating fluidized bed combustor with recycled warm flue gas[J]. Chemical Engineering Journal, 2016, 300: 230-235. |
56 | JangH N, KimJ H, BackS K, et al. Combustion characteristics of waste sludge at air and oxy-fuel combustion conditions in a circulating fluidized bed reactor[J]. Fuel, 2016, 170: 92-99. |
57 | JangH N, SungJ H, ChoiH S, et al. Combustion characteristics of waste sewage sludge using oxy-fuel circulating fluidized bed[J]. Korean Chem. Eng. Res., 2017, 55(6): 846-853. |
58 | JaroslavM, MichaelP, BoleslavZ, et al. Fluidized bed incineration of sewage sludge in O2/N2 and O2/CO2 atmospheres[J]. Energy & Fuels, 2018, 32(2): 2355-2365. |
59 | SherF, PansM A, SunC G, et al. Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor[J]. Fuel, 2018, 215: 778-786. |
60 | Kosowska-GolachowskaM, Kijo-KlecczkowskaA, LuckosA, et al. Oxy-combustion of biomass in a circulating fluidized bed[J]. Archives of Thermodynamics, 2016, 37(1): 17-30. |
61 | ZhangZ, LiuJ, ShenF H, et al. Release of Na from sawdust during air and oxy-fuel combustion: a combined temporal detection, thermodynamics and kinetic study[J]. Fuel, 2018, 221: 249-256. |
62 | ZhangZ, LiuJ, ShenF H, et al. Insights into the effects of atmosphere and chlorine on potassium release during biomass combustion: a temporal measurement and kinetic studies[J]. Energy & Fuels, 2018, 32(12): 12523-12531. |
63 | LooL, MaatenB, KonistA, et al. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash[J]. Energy Procedia, 2017, 128: 144-149. |
64 | LooL, KonistA, NeshumayevA, et al. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion[J]. Energy, 2018, 11: 1218-1229. |
65 | TanY, JiaL, WuY, et al. Experiences and results on a 0.8 MWth oxy-fuel operation pilot-scale circulating fluidized bed[J]. Applied Energy, 2012, 92: 343-347. |
66 | TanY, JiaL, WuY. Some combustion characteristics of biomass and coal cofiring under oxy-fuel conditions in a pilot-scale circulating fluidized combustor[J]. Energy & Fuels, 2013, 27(11): 7000-7007. |
67 | KumarR, SinghR I. An investigation in 20 kWth oxygen-enriched bubbling fluidized bed combustor using coal and biomass[J]. Fuel Processing Technology, 2016, 148: 256-268. |
68 | KayahanU, ÖzdoğanS. Oxygen enriched combustion and co-combustion of lignites and biomass in a 30 kWth circulating fluidized bed[J]. Energy, 2016, 116: 317-328. |
69 | PuG, ZanH F, DuJ T, et al. Study on NO emission in the oxy-fuel combustion of co-firing coal and biomass in a bubbling fluidized bed combustor[J]. BioResources, 2017, 12(1): 1890-1902. |
70 | ZhangX T, LiS Y, LiW. Study on NO and N2O emission characteristics during co-combustion of biomass and coal in oxy-fuel CFB combustor[J]. Renewable Energy Resources, 2017, 35(2): 159-165. |
71 | WangX, RenQ Q, LiW, et al. Nitrogenous gas emissions from coal/biomass co-combustion under a high oxygen concentration in a circulating fluidized bed[J]. Energy & Fuels, 2017, 31(3): 3234-3242. |
72 | VarolM, SymondsR, AnthonyE J, et al. Emissions from co-firing lignite and biomass in an oxy-fired CFBC[J]. Fuel Processing Technology, 2018, 173: 126-133. |
73 | 刘沁雯, 钟文琪, 刘雪娇, 等. 煤/生物质流态化富氧燃烧的CO2富集特性[J]. 化工学报, 2018, 69(12): 5199-5208. |
LiuQ W, ZhongW Q, LiuX J, et al. CO2 enrichment characteristics of coal/biomass fluidized oxy-fuel combustion[J]. CIESC Journal, 2018, 69(12): 5199-5208. | |
74 | SungJ H, BackS K, JeongB M, et al. Oxy-fuel co-combustion of sewage sludge and wood pellets with flue gas recirculation in a circulating fluidized bed[J]. Fuel Processing Technology, 2018, 172: 79-85. |
75 | 刘倩, 钟文琪, 苏伟, 等. 基于热重-质谱联用的煤粉富氧燃烧动力学及污染物生成特性[J]. 化工学报, 2018, 69(1): 523-530. |
LiuQ, ZhongW Q, SuW, et al. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis[J]. CIESC Journal, 2018, 69(1): 523-530. | |
76 | FuC, GundersenT. Heat integration of an oxy-combustion process for coal-fired power plants with CO2 capture by pinch analysis[J]. Chemical Engineering Transactions, 2010, 21: 181-186. |
77 | SoundararajanR, GundersenT. Coal based power plants using oxy-combustion for CO2 capture: pressurized coal combustion to reduce capture penalty[J]. Applied Thermal Engineering, 2013, 61(1): 115-122. |
78 | ChenH T, WuW. Efficiency enhancement of pressurized oxy-coal power plant with heat integration[J]. International Journal of Energy Research, 2015, 39(2): 256-264. |
79 | HongJ, ChaudhryG, BrissonJ G, et al. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor[J]. Energy, 2009, 34(9): 1332-1340. |
80 | HongJ, FieldR, GazzinoM, et al. Operating pressure dependence of the pressurized oxy-fuel combustion power cycle[J]. Energy, 2010, 35(12): 5391-5399. |
81 | ZebianH, GazzinoM, MitsosA. Multi-variable optimization of pressurized oxy-coal combustion[J]. Energy, 2012, 38(1): 37-57. |
82 | ZebianH, RossiN, GazzinoM, et al. Optimal design and operation of pressurized oxy-coal combustion with a direct contact separation column[J]. Energy, 2013, 49: 268-278. |
83 | GopanA, KumferB M, PhillipsJ, et al. Process design and performance analysis of a staged, pressurized oxy-combustion (SPOC) power plant for carbon capture[J]. Applied Energy, 2014, 125: 179-188. |
84 | ShiY, ZhongW Q, ShaoY J, et al. Energy efficiency analysis of pressurized oxy-coal combustion system utilizing circulating fluidized bed[J]. Applied Thermal Engineering, 2019, 150: 1104-1115. |
85 | ChenS Y, YuR, SoomroA, et al. Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture[J]. Energy, 2019, 175: 445-455. |
86 | WangC B, LeiM, YanW P, et al. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy Fuels, 2011, 25: 4333-4344. |
87 | LeiM, HuangX Z, WangC B, et al. Investigation on SO2, NO and NO2 release characteristics of Datong bituminous coal during pressurized oxy-fuel combustion[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1067-1075. |
88 | YingZ, ZhengX Y, CuiG M. Pressurized oxy-fuel combustion performance of pulverized coal for CO2 capture[J]. Applied Thermal Engineering, 2016, 99: 411-418. |
89 | LasekJ A, GlodK, JanuszM, et al. Pressurized oxy-fuel combustion: a study of selected parameters[J]. Energy Fuels, 2012, 26(11): 6492-6500. |
90 | LasekJ A, JanuszM, ZuwalaJ, et al. Oxy-fuel combustion of selected solid fuels under atmospheric and elevated pressures[J]. Energy, 2013, 62: 105-112. |
91 | 雷鸣, 王春波, 阎维平, 等. 增压富氧鼓泡床的NO生成特性[J]. 燃烧科学与技术, 2014, 20(5): 377-382. |
LeiM, WangC B, YanW P, et al. NO emission characteristics of pressurized oxy-fuel bubbling fluidized bed[J]. Journal of Combustion Science and Technology, 2014, 20(5): 377-382. | |
92 | LiL, DuanY Q, DuanL B, et al. Flow characteristics in pressurized oxy-fuel fluidized bed under hot condition[J]. International Journal of Multiphase Flow, 2018, 108: 1-10. |
93 | DuanY Q, DuanL B, WangJ, et al. Observation of simultaneously low CO, NOx and SO2 emission during oxy-coal combustion in a pressurized fluidized bed[J]. Fuel, 2019, 242: 374-381. |
94 | PangL, ShaoY J, ZhongW Q, et al. Experimental investigation on the coal combustion in a pressurized fluidized bed[J]. Energy, 2018, 165: 1119-1128. |
95 | ShaoY J, PangL, ZhongW Q, et al. Study on the emission characteristics of nitrogen oxides with coal combustion in pressurized fluidized bed[J]. Chinese Journal of Chemical Engineering, 2019, (5): 1177-1183. |
96 | 陈超, 邵应娟, 钟文琪, 等. 煤在加压流化床富氧燃烧条件下的碳转化规律[J]. 东南大学学报(自然科学版), 2019, 49(1): 171-177. |
ChenC, ShaoY J, ZhongW Q, et al. Carbon conversion rules of oxy-fuel coal combustion in pressurized fluidized bed[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(1): 171-177. | |
97 | PangL, ShaoY J, ZhongW Q, et al. Experimental investigation of oxy-coal combustion in a 15 kWth pressurized fluidized bed combustor[J]. Energy & Fuels, 2019, 33: 1694-1703. |
98 | MecheriM, Le MoullecY. Supercritical CO2 brayton cycles for coal-fired power plants[J]. Energy, 2016, 103: 758-771. |
99 | ParkS H, KimJ Y, YoonM K, et al. Thermodynamic and economic investigation of coal-fired power plant combined with various supercritical CO2 brayton power cycle[J]. Applied Thermal Engineering, 2018, 130: 611-623. |
100 | JohnsonG A, McdowellM W, O’ConnorG M, et al. Supercritical CO2 cycle development at pratt and whitney rocketdyne[C]// Turbine Technical Conference and Exposition, American Society of Mechanical Engineers. 2012. |
101 | AllamR J, FetvedtJ E, ForrestB A, et al. oxy-fuelThe, supercritical CO2 Allam cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emission[C]//Turbine Technical Conference and Exposition, American Society of Mechanical Engineers. 2014. |
102 | ShiY, ZhongW Q, ShaoY J, et al. System analysis on supercritical CO2 power cycle with circulating fluidized bed oxy-coal combustion[J]. Journal of Thermal Science, 2019, 28(3): 505-518. |
103 | 李平姣, 钟文琪, 陈晓乐, 等. 600 MW S-CO2循环燃煤流化床锅炉热量分布及锅炉效率[J]. 中国电机工程学报, 2019, 39(7): 2080-2092. |
LiP J, ZhongW Q, ChenX L, et al. Heat distribution and boiler efficiency of 600 MW coal-fired CFB boiler with S-CO2 power cycle[J]. Proceedings of the CSEE, 2019, 39(7): 2080-2092. | |
104 | LiuX J, ZhongW Q, LiP J, et al. Design and performance analysis of coal-fired fluidized bed for supercritical CO2 power cycle[J]. Energy, 2019, 176: 468-478. |
105 | ZhuS J, LyuQ G, ZhuJ G, et al. Low NOx emissions from pulverized coal moderate or intense low oxygen dilution combustion in O2/CO2 preheated by a circulating fluidized bed[J]. Energy & Fuels, 2018, 32(10): 10956-10963. |
106 | LyuQ G, ZhuS J, ZhuJ G, et al. Experimental study on NO emissions from pulverized char under MILD combustion in an O2/CO2 atmosphere preheated by a circulating fluidized bed[J]. Fuel Processing Technology, 2018, 176: 43-49. |
[1] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[2] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[3] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[4] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
[5] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[6] | 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012. |
[7] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[8] | 张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534. |
[9] | 王煦清, 严圣林, 朱礼涛, 张希宝, 罗正鸿. 填料塔中有机胺吸收CO2气液传质的研究进展[J]. 化工学报, 2023, 74(1): 237-256. |
[10] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
[11] | 周桓, 张梦丽, 郝晴, 吴思, 李杰, 徐存兵. 硫酸镁型光卤石转化钾盐镁矾的过程机制与动态规律[J]. 化工学报, 2022, 73(9): 3841-3850. |
[12] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
[13] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[14] | 张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738. |
[15] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||