化工学报 ›› 2022, Vol. 73 ›› Issue (8): 3731-3738.DOI: 10.11949/0438-1157.20220626
张东旺1,2(), 杨海瑞2, 周托2, 黄中2, 李诗媛1(), 张缦2()
收稿日期:
2022-05-05
修回日期:
2022-06-14
出版日期:
2022-08-05
发布日期:
2022-09-06
通讯作者:
李诗媛,张缦
作者简介:
张东旺(1996—),男,硕士研究生,18810551680@163.com
基金资助:
Dongwang ZHANG1,2(), Hairui YANG2, Tuo ZHOU2, Zhong HUANG2, Shiyuan LI1(), Man ZHANG2()
Received:
2022-05-05
Revised:
2022-06-14
Online:
2022-08-05
Published:
2022-09-06
Contact:
Shiyuan LI, Man ZHANG
摘要:
燃用生物质的CFB锅炉的尾部受热面上容易出现严重的积灰问题,严重影响换热并可能导致停炉等问题。惯性碰撞是引起生物质锅炉积灰的主要机理,而温度通过影响灰中熔融质所占的比例,进而影响积灰程度。采用加热熔融的石蜡与循环灰的混合物来模拟真实的高黏性飞灰,并搭建了冷态积灰实验台。发现石蜡与循环灰的熔融物可以快速地黏附在受热面上,大大缩短了实验时间。通过图像处理得到沉积厚度随时间的变化情况,沉积过程的生长趋势与真实生物质积灰实验一致。在冷态下实验发现,随着熔融质比例、烟气速度、颗粒粒径的增加,积灰程度呈上升趋势,为生物质锅炉的设计和运行提供了一定的参考依据。
中图分类号:
张东旺, 杨海瑞, 周托, 黄中, 李诗媛, 张缦. 生物质锅炉对流受热面积灰冷态模拟实验研究[J]. 化工学报, 2022, 73(8): 3731-3738.
Dongwang ZHANG, Hairui YANG, Tuo ZHOU, Zhong HUANG, Shiyuan LI, Man ZHANG. Cold-state experimental study on ash deposition of convection heating surface of biomass boiler[J]. CIESC Journal, 2022, 73(8): 3731-3738.
管径/ mm | 烟气温度/℃ | 烟气速度/ (m/s) | 壁温/℃ | 颗粒浓度/ (g/m3) |
---|---|---|---|---|
40 | 700 | 12 | 600 | 5 |
表1 部分计算参数
Table 1 Partial calculation parameter
管径/ mm | 烟气温度/℃ | 烟气速度/ (m/s) | 壁温/℃ | 颗粒浓度/ (g/m3) |
---|---|---|---|---|
40 | 700 | 12 | 600 | 5 |
1 | International Energy Agency(IEA). World Energy Outlook 2021[EB/OL]. 2021. . |
2 | 龚晓宇. 基于LCA的水稻秸秆热解经济与环境效益分析: 以江西省11个地级市为例[D]. 南昌: 江西财经大学, 2021. |
Gong X Y. Analysis of economic and environmental benefits of rice straw pyrolysis based on LCA—a case study of 11 cities in Jiangxi Province[D]. Nanchang: Jiangxi University of Finance and Economics, 2021. | |
3 | McKendry P. Energy production from biomass (Part 2): Conversion technologies[J]. Bioresource Technology, 2002, 83(1): 47-54. |
4 | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
Zhang D W, Fan H D, Zhao B, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3): 70-75. | |
5 | 尚琳琳. 生物质流化床燃烧黏结特性及控制研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2012. |
Shang L L. Study on agglomeration characteristics and counteraction technology of biomass combustion in fluidized bed[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2012. | |
6 | Zhou H S, Jensen P A, Frandsen F J. Dynamic mechanistic model of superheater deposit growth and shedding in a biomass fired grate boiler[J]. Fuel, 2007, 86(10/11): 1519-1533. |
7 | Hansen S B. Model for deposition build-up in biomass boilers[D]. Copenhagen: Technical University of Denmark, 2015. |
8 | Cai Y T, Tay K, Zheng Z M, et al. Modeling of ash formation and deposition processes in coal and biomass fired boilers: a comprehensive review[J]. Applied Energy, 2018, 230: 1447-1544. |
9 | Deng L, Jin X, Long J M, et al. Ash deposition behaviors during combustion of raw and water washed biomass fuels[J]. Journal of the Energy Institute, 2019, 92(4): 959-970. |
10 | 王庆松. 生物质电厂锅炉中灰渣沉积规律及结渣预防方法研究[D]. 徐州: 中国矿业大学, 2021. |
Wang Q S. Research on ash deposition laws and slagging prevention methods in biomass power plant boilers[D]. Xuzhou: China University of Mining and Technology, 2021. | |
11 | 徐晓光. 生物质燃烧过程积灰形成机理的实验研究[D]. 北京: 清华大学, 2009. |
Xu X G. Experimental investigation on the formation mechanisms of ash deposition during biomass combustion[D]. Beijing: Tsinghua University, 2009. | |
12 | 张恒立. 生物质燃烧过程受热面沉积形成及抑制机理研究[D]. 杭州: 浙江大学, 2020. |
Zhang H L. Mechanism study on ash deposition and its inhibition on heating surfaces of biomass combustion[D]. Hangzhou: Zhejiang University, 2020. | |
13 | 穆林, 赵亮, 尹洪超. 化工废液焚烧炉内积灰结渣特性[J]. 化工学报, 2012, 63(11): 3645-3651. |
Mu L, Zhao L, Yin H C. Fouling and slagging characteristics in wastewater incinerator[J]. CIESC Journal, 2012, 63(11): 3645-3651. | |
14 | 胡锦华. 垃圾焚烧系统受热面积灰生长特性研究[D]. 杭州: 浙江大学, 2020. |
Hu J H. The investigation of deposits characteristics on heating surface of waste incineration system[D]. Hangzhou: Zhejiang University, 2020. | |
15 | 孙长富, 范思远. 空冷凝汽器积灰软测量系统设计及实现[J]. 上海节能, 2021(12): 1389-1396. |
Sun C F, Fan S Y. Design and practice of soft sensing system for ash accumulation in air-cooled condenser[J]. Shanghai Energy Conservation, 2021(12): 1389-1396. | |
16 | 孙巍. 流化床垃圾焚烧积灰特性研究及冷态积灰模拟实验[D]. 杭州: 浙江大学, 2006. |
Sun W. Research on waste incineration ash deposition characteristics in fluidized beds and cold simulated experiment of ash deposition[D]. Hangzhou: Zhejiang University, 2006. | |
17 | 许明磊. 垃圾焚烧过程受热面积灰烧结特性实验研究[D]. 杭州: 浙江大学, 2007. |
Xu M L. Experimental investigation of the properties of sintered deposits on heat exchange surfaces in municipal wastes incineration[D]. Hangzhou: Zhejiang University, 2007. | |
18 | 黄中, 刘冠杰, 陈林, 等. 蜂窝外表面换热管结构验证及积灰特性研究[J]. 工程热物理学报, 2017, 38(8): 1731-1735. |
Huang Z, Liu G J, Chen L, et al. Experimental study on the ash deposition characteristics of heat exchanger tubes with honeycomb structure[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1731-1735. | |
19 | 王云刚, 赵钦新, 张建福, 等. 含SP炉灰气流横向冲刷管束积灰特性研究[C]//能源高效清洁利用及新能源技术——2012动力工程青年学术论坛论文集. 2013:302-308. |
Wang Y G, Zhao Q X, Zhang J F, et al. Experimental study on SP ash deposition characteristics on the surface of convection bank bundle[C]//Efficient and Clean Utilization of Energy and New Energy Technology — Proceedings of 2012 Youth Academic Forum on Power Engineering. 2013:302-308. | |
20 | Wiles C C. Municipal solid waste combustion ash: state-of-the-knowledge[J]. Journal of Hazardous Materials, 1996, 47(1/2/3): 325-344. |
21 | Brink A, Lindberg D, Hupa M, et al. A temperature-history based model for the sticking probability of impacting pulverized coal ash particles[J]. Fuel Processing Technology, 2016, 141: 210-215. |
22 | 穆林. 炼化废液热解与燃烧动力学及结渣形成过程研究[D]. 大连: 大连理工大学, 2012. |
Mu L. Study on kinetics of pyrolysis and combustion and ash deposits formation mechanisms for the refining and chemicals wastewater[D]. Dalian: Dalian University of Technology, 2012. | |
23 | Kær S K, Rosendahl L A, Baxter L L. Towards a CFD-based mechanistic deposit formation model for straw-fired boilers[J]. Fuel, 2006, 85(5/6): 833-848. |
24 | Yang X, Ingham D, Ma L, et al. Understanding the ash deposition formation in Zhundong lignite combustion through dynamic CFD modelling analysis[J]. Fuel, 2017, 194: 533-543. |
25 | Backman R, Hupa M, Uppstu E. Fouling and corrosion mechanisms in the recovery boiler superheater area[J]. Tappi Journal, 1987, 70(6): 123-127. |
26 | Walsh P M, Sayre A N, Loehden D O, et al. Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth[J]. Progress in Energy and Combustion Science, 1990, 16(4): 327-345. |
27 | Wessel R A, Righi J. Generalized correlations for inertial impaction of particles on a circular cylinder[J]. Aerosol Science and Technology, 1988, 9(1): 29-60. |
28 | Rocca P A D, Cerrella E G, Bonelli P R, et al. Pyrolysis of hardwoods residues: on kinetics and chars characterization[J]. Biomass and Bioenergy, 1999, 16(1): 79-88. |
29 | Israel R, Rosner D E. Use of a generalized stokes number to determine the aerodynamic capture efficiency of non-Stokesian particles from a compressible gas flow[J]. Aerosol Science and Technology, 1982, 2(1): 45-51. |
30 | 张海龙. 煤与稻谷壳掺烧结渣特性研究[D]. 杭州: 浙江大学, 2015. |
Zhang H L. Experimental investigation of ash deposits characteristics of co-combustion of coal and rice hull[D]. Hangzhou: Zhejiang University, 2015. | |
31 | Mueller C, Selenius M, Theis M, et al. Deposition behaviour of molten alkali-rich fly ashes—development of a submodel for CFD applications[J]. Proceedings of the Combustion Institute, 2005, 30(2): 2991-2998. |
32 | Wieland C, Kreutzkam B, Balan G, et al. Evaluation, comparison and validation of deposition criteria for numerical simulation of slagging[J]. Applied Energy, 2012, 93: 184-192. |
33 | Brach R M, Dunn P F. A mathematical model of the impact and adhesion of microsphers[J]. Aerosol Science and Technology, 1992, 16(1): 51-64. |
34 | Thornton C, Ning Z M. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres[J]. Powder Technology, 1998, 99(2): 154-162. |
[1] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[2] | 倪文翔, 赵京, 李博, 魏小林, 吴东垠, 刘迪, 王强. 转炉煤气全干法显热回收工艺中余热锅炉积灰特性研究[J]. 化工学报, 2023, 74(8): 3485-3493. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[5] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[6] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
[7] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[8] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[9] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[10] | 祖凌鑫, 胡荣庭, 李鑫, 陈余道, 陈广林. 木质生物质化学组分的碳释放产物特征和反硝化利用程度[J]. 化工学报, 2023, 74(3): 1332-1342. |
[11] | 郑杰元, 张先伟, 万金涛, 范宏. 丁香酚环氧有机硅树脂的制备及其固化动力学研究[J]. 化工学报, 2023, 74(2): 924-932. |
[12] | 陈健鑫, 朱瑞杰, 盛楠, 朱春宇, 饶中浩. 纤维素基生物质多孔炭的制备及其超级电容器性能研究[J]. 化工学报, 2022, 73(9): 4194-4206. |
[13] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[14] | 刘新华, 韩振南, 韩健, 梁斌, 张楠, 胡善伟, 白丁荣, 许光文. 基于热解与燃烧反应重构的低NO x 解耦燃烧原理与技术[J]. 化工学报, 2022, 73(8): 3355-3368. |
[15] | 朱莲峰, 王超, 张梦娟, 刘方正, 贾鑫, 安萍, 许光文, 韩振南. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验[J]. 化工学报, 2022, 73(8): 3720-3730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||