化工学报 ›› 2020, Vol. 71 ›› Issue (1): 148-165.DOI: 10.11949/0438-1157.20191233
周梦迪1(),沈嘉炜1(),梁立军2,李嘉辰3,金乐红1(),王琦3
收稿日期:
2019-10-23
修回日期:
2019-10-30
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
沈嘉炜,金乐红
作者简介:
周梦迪(1994—),女,硕士研究生,基金资助:
Mengdi ZHOU1(),Jiawei SHEN1(),Lijun LIANG2,Jiachen LI3,Lehong JIN1(),Qi WANG3
Received:
2019-10-23
Revised:
2019-10-30
Online:
2020-01-05
Published:
2020-01-05
Contact:
Jiawei SHEN,Lehong JIN
摘要:
石墨烯是一种由平整的单层碳原子密集堆积成二维蜂窝晶格的碳纳米材料,具有优异的光学、电学、力学等特性,在生物医药、材料学等领域具有重要的应用前景。随着石墨烯在以上研究领域的广泛应用,其生物安全性问题也备受关注。尽管有大量研究表明石墨烯的生物相容性较好,但是部分研究却发现石墨烯具有一定的生物毒性。石墨烯粒径小,容易通过皮肤进入体内,可能与蛋白质、脂质或核酸等生物大分子相互作用。近年来,由于计算机模拟技术具有成本低、安全性高、易获得实验无法获取的动态结构等优势而被广泛用于生物、化学、制药等领域。本文综述了石墨烯与细胞膜、蛋白质和DNA等生物大分子相互作用的计算机模拟研究进展,从而评估石墨烯可能存在的生物毒性,为石墨烯的生物安全性评价和生物医学应用提供了参考。
中图分类号:
周梦迪, 沈嘉炜, 梁立军, 李嘉辰, 金乐红, 王琦. 石墨烯生物毒性的计算机模拟研究进展[J]. 化工学报, 2020, 71(1): 148-165.
Mengdi ZHOU, Jiawei SHEN, Lijun LIANG, Jiachen LI, Lehong JIN, Qi WANG. Advances in computer simulation of graphene biotoxicity[J]. CIESC Journal, 2020, 71(1): 148-165.
1 | Li B L, Chen Y W, Liu J, et al. Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping[J]. Nano Letters, 2012, 12(11): 5936-5940. |
2 | Zhu C F, Zeng Z Y, Li H, et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules[J]. Journal of the American Chemical Society, 2013, 135(16): 5998-6001. |
3 | Wang L, Wang Y, Wong J I, et al. Functionalized MoS2 nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution[J]. Small, 2014, 10(6): 1101-1105. |
4 | Shao Y Y, Wang J, Hong W, et al. Graphene based electrochemical sensors and biosensors: a review[J]. Electroanalysis, 2010, 22(10): 1027-1036. |
5 | Farokhzad O C, Langer R. Impact of nanotechnology on drug delivery[J]. ACS Nano, 2009, 3(1): 16-20. |
6 | Bao H Q, Pan Y Z, Ping Y, et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small, 2011, 7(11): 1569-1578. |
7 | Li M, Yang X, Ren J, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer s disease[J]. Advanced Materials, 2012, 24(13): 1722-1728. |
8 | Yang K, Wan J M, Zhang S, et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J]. Biomaterials, 2012, 33(7): 2206-2214. |
9 | Yang Z X, Kang S G, Zhou R H. Nanomedicine: de novo design of nanodrugs[J]. Nanoscale, 2014, 6(2): 663-677. |
10 | Mahmoudi M, Azadmanesh K, Shokrgozar M A, et al. Effect of nanoparticles on the cell life cycle[J]. Chemical Reviews, 2011, 111(5): 3407-3432. |
11 | Singh N, Manshian B, Gareth J S, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials[J]. Biomaterials, 2009, 30(23): 3891-3914. |
12 | Gopalakrishnan R, Subramanian V. Interaction of collagen with carbon nanotube: a molecular dynamics investigation[J]. Journal of Biomedical Nanotechnology, 2011, 7(1): 186-187. |
13 | Makarucha A J, Todorova N, Yarovsky I. Nanomaterials in biological environment: a review of computer modelling studies[J]. European Biophysics Journal, 2011, 40(2): 103-115. |
14 | De Volder M F, Tawfick S H, Baughman R H, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013, 339(6119): 535-539. |
15 | Novoselov K S, Fal'ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. |
16 | Chang Y L, Yang S T, Liu J H, et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Letters, 2011, 200(3): 201-210. |
17 | Hu W B, Peng C, Lv M, et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano, 2011, 5(5): 3693-3700. |
18 | Zhang X Y, Hu W B, Li J, et al. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond[J]. Toxicology Research, 2012, 1(1): 62-68. |
19 | Novoselov K S, Geim A K, Morozov S V. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5096): 666-669. |
20 | Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. |
21 | Zhang Y, Tan Y W, Stormer H L, et al. Experimental observation of the quantum hall effect and Berry s phase in graphene[J]. Nature, 2005, 438(7065): 201-204. |
22 | 李婷, 张超志, 沈丹, 等. 石墨烯和氧化石墨烯的生物体毒性研究进展[J]. 南京大学学报, 2016, 52(2): 235-243. |
Li T, Zhang C Z, Shen D, et al. Advances in studies on biotoxicity of graphene and graphene oxide[J]. Journal of Nanjing University, 2016, 52(2): 235-243. | |
23 | Feng L Z, Liu Z. Graphene in biomedicine: opportunities and challenges[J]. Nanomedicine, 2011, 6(22): 317-324. |
24 | Gu Z L, Zhao L, Li W F, et al. Orientational binding of DNA guided by the C2N template[J]. ACS Nano, 2017, 11(3): 3198-3206. |
25 | Tu Y S, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8(8): 594-601. |
26 | Zuo G H, Zhou X, Huang Q, et al. Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: effect of contacting surface curvatures on binding affinity[J]. Journal of Physical Chemistry C, 2011, 115(47): 23323-23328. |
27 | 李以圭, 刘金晨. 分子模拟与化学工程[J]. 现代化工, 2001, 21(7): 10-13. |
Li Y K, Liu J C. Molecular simulation and chemical engineering[J]. Modern Chemical Industry, 2001, 21(7): 10-13. | |
28 | 欧阳芳平, 徐慧, 郭爱敏. 分子模拟方法及其在分子生物学中的应用[J]. 生物信息学, 2005, 3(1): 33-36. |
Ouyang F P, Xu H, Guo A M. Molecular simulation method and its application in molecular biology[J]. Chinese Journal of Bioinformatics, 2005, 3(1): 33-36. | |
29 | 唐赟, 李卫华, 盛亚运. 计算机分子模拟-2013年诺贝尔化学奖简介[J]. 自然杂志, 2013, 35(6): 408-415. |
Tang Y, Li W H, Sheng Y Y. Computer molecular simulation-introduction to 2013 Nobel prize in chemistry[J]. Chinese Journal of Nature, 2013, 35(6): 408-415. | |
30 | Qiao R, Roberts A P, Mount A S, et al. Translocation of C60 and its derivatives across a lipid bilayer[J]. Nano Letters, 2007, 7(3): 614-619. |
31 | Wong-Ekkabout J, Baoukina S, Tirampo W, et al. Computer simulation study of fullerene translocation through lipid membranes[J]. Nature Nanotechnology, 2008, 3(6): 363-368. |
32 | Wallace E J, Sansom M S P. Blocking of carbon nanotube based nanoinjectors by lipids: a simulation study[J]. Nano Letters, 2008, 8(9): 2751-2756. |
33 | Shi X, Annette V D B, Hurt R H, et al. Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation[J]. Nature Nanotechnology, 2011, 6(11): 714-719. |
34 | Yang K, Ma Y Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer[J]. Nature Nanotechnology, 2010, 5(8): 579-583. |
35 | Zhang Y B, Ali S F, Dervishi E, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano, 2010, 4(6): 3181-3186. |
36 | Vacha R, Martinez-Veracoechea F J, Frenkel D. Receptor-mediated endocytosis of nanoparticles of various shapes[J]. Nano Letters, 2011, 11(12): 5391-5395. |
37 | Qu G B, Liu S J, Zhang S P, et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages[J]. ACS Nano, 2013, 7(7): 5732-5745. |
38 | Hu X G, Ouyang S H, Mu L, et al. Effects of graphene oxide and oxidized carbon nanotubes on the cellular division, microstructure, uptake, oxidative stress, and metabolic profiles[J]. Environmental Science & Technology, 2015, 49(18): 10825-10833. |
39 | Kloepfer J A, Mielke R E, Nadeau J L. Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms[J]. Applied & Environmental Microbiology, 2005, 71(5): 2548-2557. |
40 | Hu W B, Peng C, Luo W, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7): 4317-4323. |
41 | Liu X T, Chen K L. Interactions of graphene oxide with model cell membranes: probing nanoparticle attachment and lipid bilayer disruption[J]. Langmuir, 2015, 31(44): 12076-12086. |
42 | Jaworski S, Hinzmann M, Sawosz E, et al. Interaction of different forms of graphene with chicken embryo red blood cells[J]. Environmental Science & Pollution Research, 2017, 24(27): 21671-21679. |
43 | Li Y F, Yuan H Y, von dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites[J]. Proceedings of The National Academy of Sciences, 2013, 110(30): 12295-12300. |
44 | Singh S K, Singh M K, Kulkarni P P, et al. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications[J]. ACS Nano, 2012, 6(3): 2731-2740. |
45 | Wu L, Zeng L, Jia X. Revealing the nature of interaction between graphene oxide and lipid membrane by surface-enhanced infrared absorption spectroscopy[J]. Journal of the American Chemical Society, 2015, 137(52): 10052-10055. |
46 | Krishnamoorthy K, Veerapandian M, Zhang L H, et al. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation[J]. Journal of Physical Chemistry C, 2012, 116(32): 17280-17287. |
47 | Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736. |
48 | Liu S B, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress[J]. ACS Nano, 2011, 5(9): 6971-6980. |
49 | Hu W B, Peng C, Luo W J, et al. Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4(7): 4317-4323. |
50 | Duan G X, Zhang Y Z, Luan B Q, et al. Graphene-induced pore formation on cell membranes[J]. Scientific Reports, 2017, 7: 42767. |
51 | Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nature Materials, 2009, 8(3): 235-242. |
52 | Zhang Z Z, Chang K, Peeters F M. Tuning of energy levels and optical properties of graphene quantum dots[J]. Physical Review B, 2008, 77(23): 235411. |
53 | Wu C Y, Wang C, Han T, et al. Insight into the cellular internalization and cytotoxicity of graphene quantum dots[J]. Advanced Healthcare Materials, 2013, 2(12): 1613-1619. |
54 | Wang S J, Cole I, Li Q. The toxicity of graphene quantum dots[J]. RSC Advance, 2016, 6(92): 89867-89878. |
55 | Liang L J, Kong Z, Kang Z, et al. Theoretical evaluation on potential cytotoxicity of graphene quantum dots[J]. ACS Biomaterials Science and Engineering, 2016, 2(11): 1983-1991. |
56 | Wong-Ekkabut J, Baoukina S, Triampo W, et al. Computer simulation study of fullerene translocation through lipid membranes[J]. Nature Nanotechnology, 2008, 3(6): 363-368. |
57 | Matesanz M C, Vila M, Feito M J, et al. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations[J]. Biomaterials, 2013, 34(5): 1562-1569. |
58 | Wang M H, Wang Q, Lu X, et al. Interaction behaviors of fibrinopeptide-A and graphene with different functional groups: a molecular dynamics simulation approach[J]. Journal of Physical Chemistry B, 2017, 121(33): 7907-7915. |
59 | Nourbakhsh A, Cantoro M, Vosch T, et al. Bandgap opening in oxygen plasma-treated graphene[J]. Nanotechnology, 2010, 21(43): 435203. |
60 | Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane[J]. Nature, 2010, 467(7312): 190-193. |
61 | Cabrera-Sanfelix P. Adsorption and reactivity of CO2 on defective graphene sheets[J]. Journal of Physical Chemistry A, 2009, 113(2): 493-498. |
62 | You Y, Deng J, Tan X, et al. On the mechanism of gas adsorption for pristine, defective and functionalized graphene[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 6051-6056. |
63 | Li B Y, Bell D R, Gu Z L, et al. Protein WW domain denaturation on defective graphene reveals the significance of nanomaterial defects in nanotoxicity[J]. Carbon, 2019, 146: 257-264. |
64 | Luan B Q, Huynh T, Zhao L, et al. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions[J]. ACS Nano, 2015, 9(1): 663-669. |
65 | Tian X, Yang Z X, Duan G X, et al. Graphene oxide nanosheets retard cellular migration via disruption of actin cytoskeleton[J]. Small, 2017, 13(3): 1602133. |
66 | Fang G, Luan B Q, Ge C C, et al. Understanding the graphene quantum dots-ubiquitin interaction by identifying the interaction sites[J]. Carbon, 2017, 121: 285-291. |
67 | Zhou M D, Shen Q Y, Shen J W, et al. Understanding the size of graphene quantum dots on protein adsorption[J]. Colloids and Surfaces B: Biointerfaces, 2019, 174: 575-581. |
68 | Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features[J]. Biopolymers, 1983, 22(12): 2577-2637. |
69 | Srivastava S, Verma A, Frankamp B L, et al. Controlled assembly of protein-nanoparticle composites through protein surface recognition[J]. Advanced Materials, 2005, 17(5): 617-621. |
70 | Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. Nano Today, 2008, 3(1/2): 40-47. |
71 | Lynch I, Salvati A, Dawson K A. Protein-nanoparticle interactions: what does the cell see?[J]. Nature Nanotechnology, 2009, 4(9): 546-547. |
72 | Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules[J]. Angewandte Chemie, 2010, 48(26): 4785-4787. |
73 | He S, Song B, Li D, et al. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis[J]. Advanced Functional Materials, 2010, 20(3): 453-459. |
74 | Sathe C, Zou X, Leburtopn J P, et al. Computational investigation of DNA detection using graphene nanopores[J]. ACS Nano, 2011, 5(11): 8842-8851. |
75 | Wells D B, Belkin M, Comer J, et al. Assessing graphene nanopores for sequencing DNA[J]. Nano Letters, 2012, 12(8): 4117-4123. |
76 | Shankla M, Aksimentiev A. Conformational transitions and stop-and-go nanopore transport of single-stranded DNA on charged graphene[J]. Nature Communications, 2014, 5: 5171. |
77 | Qiu H, Sarathy A, Leburton J P, et al. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores[J]. Nano Letters, 2015, 15(12): 8322-8330. |
78 | Roxbury D, Manohar S, Jagota A. Molecular simulation of DNA β-sheet and β-barrel structures on graphite and carbon nanotubes[J]. Journal of Physical Chemistry C, 2010, 114(31): 13267-13276. |
79 | Zhao X C. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: a molecular simulation study[J]. Journal of Physical Chemistry C, 2011, 115(14): 6181-6189. |
80 | Zeng S, Chen L, Wang Y, et al. Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations[J]. Journal of Physics D: Applied Physics, 2015, 48(27): 275402. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[5] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[6] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[7] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[8] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[9] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[10] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[11] | 张永泉, 玄伟伟. 碱金属/(FeO+CaO+MgO)对硅酸盐灰熔渣结构和黏度的影响机理[J]. 化工学报, 2023, 74(4): 1764-1771. |
[12] | 余后川, 任腾, 张宁, 姜晓滨, 代岩, 张晓鹏, 鲍军江, 贺高红. 二维氧化石墨烯膜离子选择性传递调控的研究进展[J]. 化工学报, 2023, 74(1): 303-312. |
[13] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[14] | 黄凯, 王思洁, 苏海萍, 练成, 刘洪来. 石墨烯层间距调控抑制锂枝晶生长的第一性原理研究[J]. 化工学报, 2022, 73(8): 3501-3510. |
[15] | 韩双, 张楠, 王慧, 张璇, 杨金栾, 张蔓琳, 张志超. 金霉素分子印迹电化学传感器的制备与应用[J]. 化工学报, 2022, 73(8): 3758-3767. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||