化工学报 ›› 2020, Vol. 71 ›› Issue (1): 138-147.DOI: 10.11949/0438-1157.20191208
收稿日期:
2019-10-22
修回日期:
2019-10-31
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
许映杰
作者简介:
刘佳佳(1996—),男,硕士研究生,基金资助:
Jiajia LIU(),Xue FU,Yingjie XU()
Received:
2019-10-22
Revised:
2019-10-31
Online:
2020-01-05
Published:
2020-01-05
Contact:
Yingjie XU
摘要:
离子液体(ILs)作为一种新型的绿色溶剂在吸收和分离一氧化碳(CO)方面显示出了独特的优异性和潜在的应用价值。对近年来ILs参与CO吸收分离的研究工作进展进行了综述,主要包括常规ILs、阴离子功能化ILs、ILs/Cu (Ⅰ)盐和ILs支撑液膜。重点论述了CO在ILs中的溶解度及对其他气体的选择性,并与ILs吸收分离二氧化碳(CO2)性能进行了比较;着重讨论了阴阳离子种类、取代基类型、温度、压力等因素对ILs吸收分离CO性能的影响,并介绍了ILs吸收CO的机理。最后,对设计合成新型功能化ILs应用于高效吸收分离CO提出了一些建议。
中图分类号:
刘佳佳, 付雪, 许映杰. 离子液体吸收分离一氧化碳的研究进展[J]. 化工学报, 2020, 71(1): 138-147.
Jiajia LIU, Xue FU, Yingjie XU. Progress on carbon monoxide removal using ionic liquids[J]. CIESC Journal, 2020, 71(1): 138-147.
1 | Patterson P M , Das T K , Davis B H . Carbon monoxide hydrogenation over molybdenum and tungsten carbides[J]. Applied Catalysis A: General, 2003, 251(2): 449-455. |
2 | Zhang H , Chu W , Xu H , et al . Plasma-assisted preparation of Fe-Cu bimetal catalyst for higher alcohols synthesis from carbon monoxide hydrogenation[J]. Fuel, 2010, 89(10): 3127-3131. |
3 | Hanc-Scherer F A , Sánchez-Sánchez C M , Ilea P , et al . Surface-sensitive electrooxidation of carbon monoxide in room temperature ionic liquids[J]. ACS Catalysis, 2013, 3(12): 2935-2938. |
4 | Ejigu A , Johnson L , Licence P , et al . Electrocatalytic oxidation of methanol and carbon monoxide at platinum in protic ionic liquids[J]. Electrochemistry Communications, 2012, 23: 122-124. |
5 | Hwang S , Lee J , Hong U G , et al . Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: effect of nickel content[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 154-157. |
6 | Sonoda N , Mtyoshi N , Tsunoi S , et al . A new and convenient process for separation of carbon monoxide[J]. Chemistry Letters, 1990, 19(10): 1873-1876. |
7 | Evans A , Luebke R , Petit C . The use of metal-organic frameworks for CO purification[J]. Journal of Materials Chemistry A, 2018, 6(23): 10570-10594. |
8 | Kasuya F , Tsuji T . High purity CO gas separation by pressure swing adsorption[J]. Gas Separation & Purification, 1991, 5(4): 242-246. |
9 | Hogendoorn J A , van Swaaij W P M , Versteeg G F . The absorption of carbon monoxide in COSORB solutions: absorption rate and capacity[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 243-252. |
10 | Rogers R D , Seddon K R . Ionic liquids-solvents of the future?[J]. Science, 2003, 302(5646): 792-793. |
11 | Seddon K R . Ionic liquids for clean technology[J]. Journal of Chemical Technology & Biotechnology, 1997, 68(4): 351-356. |
12 | Plechkova N V , Seddon K R . Applications of ionic liquids in the chemical industry[J]. Chemical Society Reviews, 2008, 37(1): 123-150. |
13 | Holbrey J D , Seddon K R . Ionic liquids[J]. Clean Products and Processes, 1999, 1(4): 223-236. |
14 | Wang C , Luo H , Jiang D , et al . Carbon dioxide capture by superbase‐derived protic ionic liquids[J]. Angewandte Chemie International Edition, 2010, 49(34): 5978-5981. |
15 | Gurau G , Rodríguez H , Kelley S P , et al . Demonstration of chemisorption of carbon dioxide in 1,3‐dialkylimidazolium acetate ionic liquids[J]. Angewandte Chemie International Edition, 2011, 50(50): 12024-12026. |
16 | Shiflett M B , Niehaus A M S , Yokozeki A . Separation of N2O and CO2 using room-temperature ionic liquid [bmim][BF4][J]. Journal of Physical Chemistry B, 2011, 115(13): 3478-3487. |
17 | Liu A H , Ma R , Song C , et al . Equimolar CO2 capture by N‐substituted amino acid salts and subsequent conversion[J]. Angewandte Chemie International Edition, 2012, 51(45): 11306-11310. |
18 | Zhao Y , Yu B , Yang Z , et al . A protic ionic liquid catalyzes CO2 conversion at atmospheric pressure and room temperature: synthesis of quinazoline-2,4(1H,3H)-diones[J]. Angewandte Chemie International Edition, 2014, 53(23): 5922-5925. |
19 | Gurkan B E , de la Fuente J C , Mindrup E M , et al . Equimolar CO2 absorption by anion-functionalized ionic liquids[J]. Journal of the American Chemical Society, 2010, 132(7): 2116-2117. |
20 | Luo X , Guo Y , Ding F , et al . Significant improvements in CO2 capture by pyridine‐containing anion‐functionalized ionic liquids through multiple-site cooperative interactions[J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057. |
21 | Hu J , Ma J , Zhu Q , et al . Transformation of atmospheric CO2 catalyzed by protic ionic liquids: efficient synthesis of 2-oxazolidinones[J]. Angewandte Chemie International Edition, 2015, 54(18): 5399-5403. |
22 | Chen F F , Huang K , Zhou Y , et al . Multi‐molar absorption of CO2 by the activation of carboxylate groups in amino acid ionic liquids[J]. Angewandte Chemie International Edition, 2016, 55(25): 7166-7170. |
23 | Cui G , Wang J , Zhang S . Active chemisorption sites in functionalized ionic liquids for carbon capture[J]. Chemical Society Reviews, 2016, 45(15): 4307-4339. |
24 | Chen K , Shi G , Zhang W , et al . Computer-assisted design of ionic liquids for efficient synthesis of 3 (2H)-furanones: a domino reaction triggered by CO2 [J]. Journal of the American Chemical Society, 2016, 138(43): 14198-14201. |
25 | Wu W , Han B , Gao H , et al . Desulfurization of flue gas: SO2 absorption by an ionic liquid[J]. Angewandte Chemie International Edition, 2004, 43(18): 2415-2417. |
26 | Jiang Y Y , Zhou Z , Jiao Z , et al . SO2 gas separation using supported ionic liquid membranes[J]. Journal of Physical Chemistry B, 2007, 111(19): 5058-5061. |
27 | Wang C , Cui G , Luo X , et al . Highly efficient and reversible SO2 capture by tunable azole-based ionic liquids through multiple-site chemical absorption[J]. Journal of the American Chemical Society, 2011, 133(31): 11916-11919. |
28 | Cui G , Zheng J , Luo X , et al . Tuning anion‐functionalized ionic liquids for improved SO2 capture[J]. Angewandte Chemie International Edition, 2013, 52(40): 10620-10624. |
29 | Huang K , Chen Y L , Zhang X M , et al . SO2 absorption in acid salt ionic liquids/sulfolane binary mixtures: experimental study and thermodynamic analysis[J]. Chemical Engineering Journal, 2014, 237: 478-486. |
30 | Jou F Y , Mather A E . Solubility of hydrogen sulfide in [bmim][PF6][J]. International Journal of Thermophysics, 2007, 28(2): 490. |
31 | Huang K , Cai D N , Chen Y L , et al . Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task‐specific ionic liquids for H2S absorption[J]. AIChE Journal, 2013, 59(6): 2227-2235. |
32 | 曹领帝, 曾少娟, 张香平, 等 . 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66(S1): 1-9. |
Cao L D , Zeng S J , Zhang X P , et al . Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66(S1):1-9. | |
33 | Revelli A L , Mutelet F , Jaubert J N . Reducing of nitrous oxide emissions using ionic liquids[J]. Journal of Physical Chemistry B, 2010, 114(24): 8199-8206. |
34 | Duan E , Guo B , Zhang D , et al . Absorption of NO and NO2 in caprolactam tetrabutyl ammonium halide ionic liquids[J]. Journal of the Air & Waste Management Association, 2011, 61(12): 1393-1397. |
35 | Jiang B , Lin W , Zhang L , et al . 1,3-Dimethylurea tetrabutylphosphonium bromide ionic liquids for NO efficient and reversible capture[J]. Energy & Fuels, 2016, 30(1): 735-739. |
36 | Chen K , Shi G , Zhou X , et al . Highly efficient nitric oxide capture by azole‐based ionic liquids through multiple‐site absorption[J]. Angewandte Chemie International Edition, 2016, 55(46): 14364-14368. |
37 | Yokozeki A , Shiflett M B . Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2007, 46(5): 1605-1610. |
38 | Li G , Zhou Q , Zhang X , et al . Solubilities of ammonia in basic imidazolium ionic liquids[J]. Fluid Phase Equilibria, 2010, 297(1): 34-39. |
39 | 曾少娟, 尚大伟, 余敏, 等 . 离子液体在氨气分离回收中的应用及展望[J]. 化工学报, 2019, 70(3):791-800. |
Zeng S J , Shang D W , Yu M , et al . Applications and perspectives of NH3 separation and recovery with ionic liquids[J]. CIESC Journal, 2019, 70(3):791-800. | |
40 | Blyholder G . Molecular orbital view of chemisorbed carbon monoxide[J]. Journal of Physical Chemistry, 1964, 68(10): 2772-2777. |
41 | Kumełan J , Kamps Á P S , Urukova I , et al . Solubility of oxygen in the ionic liquid [bmim][PF6]: experimental and molecular simulation results[J]. Journal of Chemical Thermodynamics, 2005, 37(6): 595-602. |
42 | Liu Q , Takemura F , Yabe A . Solubility and diffusivity of carbon monoxide in liquid methanol[J]. Journal of Chemical & Engineering Data, 1996, 41(3): 589-592. |
43 | Jeong A Y , Cho H K , Lim J S . Solubility measurement and correlation of carbon monoxide (CO) in butyraldehydes: n-butyraldehyde and iso-butyraldehyde[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 704-711. |
44 | Ohlin C A , Dyson P J , Laurenczy G . Carbon monoxide solubility in ionic liquids: determination, prediction and relevance to hydroformylation[J]. Chemical Communications, 2004, (9): 1070-1071. |
45 | Raeissi S , Florusse L J , Peters C J . Purification of flue gas by ionic liquids: carbon monoxide capture in [bmim][Tf2N][J]. AIChE Journal, 2013, 59(10): 3886-3891. |
46 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of CO in the ionic liquid [bmim][PF6][J]. Fluid Phase Equilibria, 2005, 228: 207-211. |
47 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of the single gases H2 and CO in the ionic liquid [bmim][CH3SO4][J]. Fluid Phase Equilibria, 2007, 260(1): 3-8. |
48 | Kumełan J , Kamps Á P S , Tuma D , et al . Solubility of the single gases carbon monoxide and oxygen in the ionic liquid [hmim][Tf2N][J]. Journal of Chemical & Engineering Data, 2009, 54(3): 966-971. |
49 | Tao D J , Chen F F , Tian Z Q , et al . Highly efficient carbon monoxide capture by carbanion‐functionalized ionic liquids through C‐site interactions[J]. Angewandte Chemie International Edition, 2017, 56(24): 6843-6847. |
50 | David O C , Zarca G , Gorri D , et al . On the improved absorption of carbon monoxide in the ionic liquid 1-hexyl-3-methylimidazolium chlorocuprate[J]. Separation and Purification Technology, 2012, 97: 65-72. |
51 | Zarca G , Ortiz I , Urtiaga A . Novel solvents based on thiocyanate ionic liquids doped with copper (I) with enhanced equilibrium selectivity for carbon monoxide separation from light gases[J]. Separation and Purification Technology, 2018, 196: 47-56. |
52 | Liu Y M , Tian Z , Qu F , et al . Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11894-11900. |
53 | Tu Z H , Zhang Y Y , Wu Y T , et al . Self-enhancement of CO reversible absorption accompanied by phase transition in protic chlorocuprate ionic liquids for effective CO separation from N2 [J]. Chemical Communications, 2019, 55(23): 3390-3393. |
54 | Florusse L J , Raeissi S , Peters C J . An IUPAC task group study: the solubility of carbon monoxide in [hmim][Tf2N] at high pressures[J]. Journal of Chemical & Engineering Data, 2011, 56(12): 4797-4799. |
55 | Perez-Salado Kamps A , Tuma D , Xia J , et al . Solubility of CO2 in the ionic liquid [bmim][PF6][J]. Journal of Chemical & Engineering Data, 2003, 48(3): 746-749. |
56 | Kumełan J , Pérez-Salado Kamps Á, Tuma D , et al . Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6][J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1802-1807. |
57 | Kumełan J , Kamps A P S , Tuma D , et al . Solubility of CO2 in the ionic liquid [hmim][Tf2N][J]. The Journal of Chemical Thermodynamics, 2006, 38(11): 1396-1401. |
58 | Li X , Zhao D , Fei Z , et al . Applications of functionalized ionic liquids[J]. Science in China Series B: Chemistry, 2006, 49(5): 385-401. |
59 | Lee S . Functionalized imidazolium salts for task-specific ionic liquids and their applications[J]. Chemical Communications, 2006, (10): 1049-1063. |
60 | Liu F , Huang K , Jiang L . Promoted adsorption of CO2 on amine‐impregnated adsorbents by functionalized ionic liquids[J]. AIChE Journal, 2018, 64(10): 3671-3680. |
61 | Li A , Tian Z , Yan T , et al . Anion-functionalized task-specific ionic liquids: molecular origin of change in viscosity upon CO2 capture[J]. Journal of Physical Chemistry B, 2014, 118(51): 14880-14887. |
62 | Luo X Y , Fan X , Shi G L , et al . Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond[J]. Journal of Physical Chemistry B, 2016, 120(10): 2807-2813. |
63 | Qian W , Xu Y , Xie B , et al . Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature[J]. International Journal of Greenhouse Gas Control, 2017, 56: 194-201. |
64 | Lashani-zadehgan A , Darvishi P . Thermophysical properties and CO2 absorption studies of the amine functionalized [Amim][Tf2N] and the non-functionalized counterpart [bmim][Tf2N] ionic liquids[J]. International Journal of Greenhouse Gas Control, 2016, 53: 328-337. |
65 | Wang G , Hou W , Xiao F , et al . Low-viscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible CO2 absorption[J]. Journal of Chemical & Engineering Data, 2011, 56(4): 1125-1133. |
66 | Jiang B , Huang Z , Zhang L , et al . Highly efficient and reversible CO2 capture by imidazolate-based ether-functionalized ionic liquids with a capture transforming process[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 69: 85-92. |
67 | Huang Y , Cui G , Wang H , et al . Absorption and thermodynamic properties of CO2 by amido-containing anion-functionalized ionic liquids[J]. RSC Advances, 2019, 9(4): 1882-1888. |
68 | Zeng S , Wang J , Bai L , et al . Highly selective capture of CO2 by ether-functionalized pyridinium ionic liquids with low viscosity[J]. Energy & Fuels, 2015, 29(9): 6039-6048. |
69 | Cui G , Zhang F , Zhou X , et al . Acylamido-based anion-functionalized ionic liquids for efficient SO2 capture through multiple-site interactions[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 2264-2270. |
70 | Chen K , Lin W , Yu X , et al . Designing of anion‐functionalized ionic liquids for efficient capture of SO2 from flue gas[J]. AIChE Journal, 2015, 61(6): 2028-2034. |
71 | Li J , Kang Y , Li B , et al . PEG-linked functionalized dicationic ionic liquids for highly efficient SO2 capture through physical absorption[J]. Energy & Fuels, 2018, 32(12): 12703-12710. |
72 | Huang K , Cai D N , Chen Y L , et al . Dual Lewis base functionalization of ionic liquids for highly efficient and selective capture of H2S[J]. ChemPlusChem, 2014, 79(2): 241-249. |
73 | Zheng W , Wu D , Feng X , et al . Low viscous protic ionic liquids functionalized with multiple Lewis base for highly efficient capture of H2S[J]. Journal of Molecular Liquids, 2018, 263: 209-217. |
74 | Huang K , Zhang J Y , Hu X B , et al . Absorption of H2S and CO2 in aqueous solutions of tertiary-amine functionalized protic ionic liquids[J]. Energy & Fuels, 2017, 31(12): 14060-14069. |
75 | Bates E D , Mayton R D , Ntai I , et al . CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
76 | Shiflett M B , Yokozeki A . Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4][J]. Industrial & Engineering Chemistry Research, 2005, 44(12): 4453-4464. |
77 | Ding F , He X , Luo X , et al . Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C—H⋯O hydrogen bonding interaction strengthened by the anion[J]. Chemical Communications, 2014, 50(95): 15041-15044. |
78 | Luo X , Guo Y , Ding F , et al . Significant improvements in CO2 capture by pyridine‐containing anion‐functionalized ionic liquids through multiple‐site cooperative interactions[J]. Angewandte Chemie International Edition, 2014, 53(27): 7053-7057. |
79 | Repper S E , Haynes A , Ditzel E J , et al . Infrared spectroscopic study of absorption and separation of CO using copper (I)-containing ionic liquids[J]. Dalton Transactions, 2017, 46(9): 2821-2828. |
80 | Huang H Y , Padin J , Yang R T . Comparison of π-complexations of ethylene and carbon monoxide with Cu+ and Ag+ [J]. Industrial & Engineering Chemistry Research, 1999, 38(7): 2720-2725. |
81 | Zarca G , Ortiz I , Urtiaga A , et al . Accurate thermodynamic modeling of ionic liquids/metal salt mixtures: application to carbon monoxide reactive absorption[J]. AIChE Journal, 2017, 63(8): 3532-3543. |
82 | Lei Z , Shen P , Dai C . Solubility of CO in the mixture of ionic liquid and ZIF: an experimental and modeling study[J]. Journal of Chemical & Engineering Data, 2015, 61(2): 846-855. |
83 | Zarca G , Ortiz I , Urtiaga A . Recovery of carbon monoxide from flue gases by reactive absorption in ionic liquid imidazolium chlorocuprate (I): Mass transfer coefficients[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 769-774. |
84 | Zarca G , Urtiaga A , Ortiz I , et al . Carbon monoxide reactive separation with basic 1-hexyl-3-methylimidazolium chlorocuprate (I) ionic liquid: electrochemical determination of mass transport properties[J]. Separation and Purification Technology, 2015, 141: 31-37. |
85 | Zarca G , Ortiz I , Urtiaga A . Kinetics of the carbon monoxide reactive uptake by an imidazolium chlorocuprate (I) ionic liquid[J]. Chemical Engineering Journal, 2014, 252: 298-304. |
86 | Sharma A , Julcour C , Kelkar A A , et al . Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor[J]. Industrial & Engineering Chemistry Research, 2009, 48(8): 4075-4082. |
87 | Zarca G , Ortiz I , Urtiaga A . Behaviour of 1-hexyl-3-methylimidazolium chloride-supported ionic liquid membranes in the permeation of CO2, H2, CO and N2 single and mixed gases[J]. Desalination and Water Treatment, 2015, 56(13): 3640-3646. |
88 | Zarca G , Ortiz I , Urtiaga A . Copper (I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation[J]. Journal of Membrane Science, 2013, 438: 38-45. |
89 | Zarca G , Ortiz I , Urtiaga A . Facilitated-transport supported ionic liquid membranes for the simultaneous recovery of hydrogen and carbon monoxide from nitrogen-enriched gas mixtures[J]. Chemical Engineering Research and Design, 2014, 92(4): 764-768. |
90 | Feng S , Wu Y , Luo J , et al . AgBF4/[emim][BF4] supported ionic liquid membrane for carbon monoxide/nitrogen separation[J]. Journal of Energy Chemistry, 2019, 29: 31-39. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[6] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[9] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[10] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[11] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[12] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[13] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[14] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[15] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||