化工学报 ›› 2020, Vol. 71 ›› Issue (2): 429-450.DOI: 10.11949/0438-1157.20190801
收稿日期:
2019-07-11
修回日期:
2019-09-18
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
王志
作者简介:
原野(1995—),男,硕士研究生,基金资助:
Ye YUAN1(),Ming WANG2,Yunqi ZHOU1,Zhi WANG1(),Jixiao WANG1
Received:
2019-07-11
Revised:
2019-09-18
Online:
2020-02-05
Published:
2020-02-05
Contact:
Zhi WANG
摘要:
金属有机框架(MOFs)以其可灵活调节的孔道结构、大孔隙率和大比表面积等特点受到广泛关注。设计并构建能够实现目标功能的、具有合适孔径分布的MOFs材料关系到MOFs材料在分离、催化以及质子传导等领域中的应用。综述了MOFs材料孔径的主要调控方法,包括原位合成调控、后合成修饰调控、穿插调控以及辅助合成调控,总结了四种调控方法的特点和不足,并对未来MOFs孔径调控的发展方向进行了展望。
中图分类号:
原野, 王明, 周云琪, 王志, 王纪孝. 金属有机框架孔径调控进展[J]. 化工学报, 2020, 71(2): 429-450.
Ye YUAN, Ming WANG, Yunqi ZHOU, Zhi WANG, Jixiao WANG. Progress in pore size regulation of metal-organic frameworks[J]. CIESC Journal, 2020, 71(2): 429-450.
1 | 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报, 2018, 69(6): 2339-2352. |
Cui X L, Xing H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal, 2018, 69(6): 2339-2352. | |
2 | Zhao X, Wang Y, Li D S, et al. Metal-organic frameworks for separation[J]. Advanced Materials, 2018, 30(37): 1705189. |
3 | Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chemical Reviews, 2012, 112(2): 869-932. |
4 | Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers[J]. Coordination Chemistry Reviews, 2007, 251(21): 2490-2509. |
5 | Xue D X, Wang Q, Bai J F. Amide-functionalized metal-organic frameworks: syntheses, structures and improved gas storage and separation properties[J]. Coordination Chemistry Reviews, 2019, 378: 2-16. |
6 | Yu G L, Zou X Q, Sun L, et al. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity[J]. Advanced Materials, 2019, 31(15): 1806853. |
7 | Jiao Y, Hong W Z, Li P Y, et al. Metal-organic framework derived Ni/NiO micro-particles with subtle lattice distortions for high-performance electrocatalyst and supercapacitor[J]. Applied Catalysis B-Environmental, 2019, 244: 732-739. |
8 | Xu C P, Fang R Q, Luque R, et al. Functional metal-organic frameworks for catalytic applications[J]. Coordination Chemistry Reviews, 2019, 388: 268-292. |
9 | Jurcic M, Peveler W J, Savory C N, et al. Sensing and discrimination of explosives at variable concentrations with a large-pore MOF as part of a luminescent array[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11618-11626. |
10 | Yang N N, Zhou L J, Li P, et al. Space-confined indicator displacement assay inside a metal-organic framework for fluorescence turn-on sensing[J]. Chemical Science, 2019, 10(11): 3307-3314. |
11 | Joarder B, Lin J B, Romero Z, et al. Single crystal proton conduction study of a metal organic framework of modest water stability[J]. Journal of the American Chemical Society, 2017, 139(21): 7176-7179. |
12 | Zhang F M, Dong L Z, Qin J S, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189. |
13 | Liang Z B, Qu C, Guo W H, et al. Pristine metal-organic frameworks and their composites for energy storage and conversion[J]. Advanced Materials, 2018, 30(37): 1702891 |
14 | Liu J L, Zhu D D, Guo C X, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions[J]. Advanced Energy Materials, 2017, 7(23): 1700518 |
15 | He S, Chen Y, Zhang Z, et al. Competitive coordination strategy for the synthesis of hierarchical-pore metal-organic framework nanostructures[J]. Chemical Science, 2016, 7(12): 7101-7105. |
16 | Bradshaw D, El-Hankari S, Lupica-Spagnolo L. Supramolecular templating of hierarchically porous metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16): 5431-5443. |
17 | Hu M L, Masoomi M Y, Morsali A. Template strategies with MOFs[J]. Coordination Chemistry Reviews, 2019, 387: 415-435. |
18 | Huang H, Li J R, Wang K, et al. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks[J]. Nature Communications, 2015, 6: 8847. |
19 | Xuan W, Zhu C, Liu Y, et al. Mesoporous metal-organic framework materials[J]. Chemical Society Reviews, 2012, 41(5): 1677-1695. |
20 | 马子健. 小分子胺和MOFs分别改性聚乙烯基胺制备高性能CO2分离膜[D]. 天津: 天津大学, 2014. |
Ma Z J. Preparation of high performance CO2 separation membrane by modifying polyvinylamine with low molecular weight amines or MOFs[D]. Tianjin: Tianjin University, 2014. | |
21 | Qiao Z, Sheng M, Wang J, et al. Metal-induced polymer framework membrane with high performance for CO2 separation[J]. AIChE Journal, 2019, 65(1): 239-249. |
22 | Qiao Z, Zhao S, Wang J, et al. A highly permeable aligned montmorillonite mixed-matrix membrane for CO2 separation[J]. Angewandte Chemie, 2016, 128(32): 9467-9471. |
23 | Cao X, Wang Z, Qiao Z, et al. Penetrated COF channels: amino environment and suitable size for CO2 preferential adsorption and transport in mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5306-5315. |
24 | Halder A, Ghoshal D. Structure and properties of dynamic metal-organic frameworks: a brief accounts of crystalline-to-crystalline and crystalline-to-amorphous transformations[J]. CrystEngComm, 2018, 20(10): 1322-1345. |
25 | Graham A J, Allan D R, Muszkiewicz A, et al. The effect of high pressure on MOF-5: guest-induced modification of pore size and content at high pressure[J]. Angewandte Chemie-International Edition, 2011, 50(47): 11138-11141. |
26 | Teplensky M H, Fantham M, Li P, et al. Temperature treatment of highly porous zirconium-containing metal-organic frameworks extends drug delivery release[J]. Journal of the American Chemical Society, 2017, 139(22): 7522-7532. |
27 | Li H, Hill M R. Low-energy CO2 release from metal-organic frameworks triggered by external stimuli[J]. Accounts of Chemical Research, 2017, 50(4): 778-786. |
28 | Fernandez C A, Martin P C, Schaef T, et al. An electrically switchable metal-organic framework[J]. Scientific Reports, 2014, 4: 6114. |
29 | Fu J, Li H, Mu Y, et al. Reversible single crystal to single crystal transformation with anion exchange-induced weak Cu2+⋯I- interactions and modification of the structures and properties of MOFs[J]. Chemical Communications, 2011, 47(18): 5271-5273. |
30 | Garai B, Mallick A, Banerjee R. Photochromic metal-organic frameworks for inkless and erasable printing[J]. Chemical Science, 2016, 7(3): 2195-2200. |
31 | Mehlana G, Bourne S A. Unravelling chromism in metal-organic frameworks[J]. CrystEngComm, 2017, 19(30): 4238-4259. |
32 | Khan N A, Hasan Z, Jhung S H. Beyond pristine metal-organic frameworks: preparation and application of nanostructured, nanosized, and analogous MOFs[J]. Coordination Chemistry Reviews, 2018, 376: 20-45. |
33 | Yaghi O M, O'keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941): 705-714. |
34 | Guillerm V, Grancha T, Imaz I, et al. Zigzag ligands for transversal design in reticular chemistry: unveiling new structural opportunities for metal-organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(32): 10153-10157. |
35 | Haque E, Jeong J H, Jhung S H. Synthesis of isostructural porous metal-benzenedicarboxylates: effect of metal ions on the kinetics of synthesis[J]. CrystEngComm, 2010, 12(10): 2749-2754. |
36 | Cavka J H, Jakobsen S, Olsbye U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
37 | Kang I J, Khan N A, Haque E, et al. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chemistry - A European Journal, 2011, 17(23): 6437-6442. |
38 | Leus K, Bogaerts T, De Decker J, et al. Systematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks[J]. Microporous and Mesoporous Materials, 2016, 226: 110-116. |
39 | Gomes S C, Luz I, Llabrés I X F X, et al. Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation[J]. Chemistry - A European Journal, 2010, 16(36): 11133-11138. |
40 | Chen Z, Hanna S L, Redfern L R, et al. Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs[J]. Coordination Chemistry Reviews, 2019, 386: 32-49. |
41 | Furukawa H, Gándara F, Zhang Y B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381. |
42 | Yuan S, Lu W, Chen Y P, et al. Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks[J]. Journal of the American Chemical Society, 2015, 137(9): 3177-3180. |
43 | Feng D, Gu Z Y, Li J R, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angewandte Chemie-International Edition, 2012, 51(41): 10307-10310. |
44 | Morris W, Volosskiy B, Demir S, et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks[J]. Inorganic Chemistry, 2012, 51(12): 6443-6445. |
45 | Shearer G C, Forselv S, Chavan S, et al. In situ infrared spectroscopic and gravimetric characterisation of the solvent removal and dehydroxylation of the metal-organic frameworks UiO-66 and UiO-67[J]. Topics in Catalysis, 2013, 56(9): 770-782. |
46 | Zhang M, Chen Y P, Bosch M, et al. Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology[J]. Angewandte Chemie-International Edition, 2014, 53(3): 815-818. |
47 | Nguyen P T K, Nguyen H T D, Nguyen H N, et al. New metal-organic frameworks for chemical fixation of CO2[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 733-744. |
48 | Alezi D, Spanopoulos I, Tsangarakis C, et al. Reticular chemistry at its best: directed assembly of hexagonal building units into the awaited metal-organic framework with the intricate polybenzene topology, pbz-MOF[J]. Journal of the American Chemical Society, 2016, 138(39): 12767-12770. |
49 | Zhang Y, Zhang X, Lyu J, et al. A flexible metal-organic framework with 4-connected Zr6 nodes[J]. Journal of the American Chemical Society, 2018, 140(36): 11179-11183. |
50 | Bon V, Senkovskyy V, Senkovska I, et al. Zr(Ⅳ) and Hf(Ⅳ) based metal-organic frameworks with reo-topology[J]. Chemical Communications, 2012, 48(67): 8407-8409. |
51 | Deria P, Gómez-Gualdrón D A, Hod I, et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato)zinc(II) MOFs[J]. Journal of the American Chemical Society, 2016, 138(43): 14449-14457. |
52 | Kung C W, Wang T C, Mondloch J E, et al. metal-organic framework thin films composed of free-standing acicular nanorods exhibiting reversible electrochromism[J]. Chemistry of Materials, 2013, 25(24): 5012-5017. |
53 | Feng D, Chung W C, Wei Z, et al. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. Journal of the American Chemical Society, 2013, 135(45): 17105-17110. |
54 | Feng D, Gu Z Y, Chen Y P, et al. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology[J]. Journal of the American Chemical Society, 2014, 136(51): 17714-17717. |
55 | Feng D, Wang K, Su J, et al. A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores[J]. Angewandte Chemie-International Edition, 2015, 54(1): 149-154. |
56 | Jiang H L, Feng D, Wang K, et al. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence[J]. Journal of the American Chemical Society, 2013, 135(37): 13934-13938. |
57 | Wang B, Lyu X L, Feng D, et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water[J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. |
58 | Liu T F, Vermeulen N A, Howarth A J, et al. Adding to the arsenal of zirconium-based metal-organic frameworks: the topology as a platform for solvent-assisted metal incorporation[J]. European Journal of Inorganic Chemistry, 2016, 2016(27): 4349-4352. |
59 | Férey G. Hybrid porous solids: past, present, future[J]. Chemical Society Reviews, 2008, 37(1): 191-214. |
60 | Rosi N L, Kim J, Eddaoudi M, et al. Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units[J]. Journal of the American Chemical Society, 2005, 127(5): 1504-1518. |
61 | Xin Z, Bai J, Shen Y, et al. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance[J]. Crystal Growth & Design, 2010, 10(6): 2451-2454. |
62 | Rezaee S, Shahrokhian S. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol[J]. Applied Catalysis B: Environmental, 2019, 244: 802-813. |
63 | Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry - A European Journal, 2004, 10(6): 1373-1382. |
64 | Alaerts L, Maes M, Giebeler L, et al. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53[J]. Journal of the American Chemical Society, 2008, 130(43): 14170-14178. |
65 | Barthelet K, Marrot J, Riou D, et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie, 2002, 114(2): 291-294. |
66 | Horcajada P, Chalati T, Serre C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature Materials, 2009, 9: 172-178. |
67 | Dan-Hardi M, Serre C, Frot T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. |
68 | Liu D, Zou D, Zhu H, et al. Mesoporous metal-organic frameworks: synthetic strategies and emerging applications[J]. Small, 2018, 14(37): 1801454. |
69 | Low J J, Benin A I, Jakubczak P, et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. |
70 | Banerjee R, Furukawa H, Britt D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. Journal of the American Chemical Society, 2009, 131(11): 3875-3877. |
71 | Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Accounts of Chemical Research, 2010, 43(1): 58-67. |
72 | Kaneti Y V, Dutta S, Hossain M S A, et al. Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications[J]. Advanced Materials, 2017, 29(38): 1700213. |
73 | Noh K, Lee J, Kim J. Compositions and structures of zeolitic imidazolate frameworks[J]. Israel Journal of Chemistry, 2018, 58(9/10): 1075-1088. |
74 | Cohen S M. Postsynthetic methods for the functionalization of metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 970-1000. |
75 | Yin Z, Wan S, Yang J, et al. Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512. |
76 | Li P Z, Wang X J, Zhao Y. Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks[J]. Coordination Chemistry Reviews, 2019, 380: 484-518. |
77 | Deria P, Mondloch J E, Karagiaridi O, et al. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement[J]. Chemical Society Reviews, 2014, 43(16): 5896-5912. |
78 | Burrows A D, Frost C G, Mahon M F, et al. Post-synthetic modification of tagged metal-organic frameworks[J]. Angewandte Chemie-International Edition, 2008, 47(44): 8482-8486. |
79 | Wang Z, Tanabe K K, Cohen S M. Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity[J]. Inorganic Chemistry, 2009, 48(1): 296-306. |
80 | Wang Z, Cohen S M. Tandem Modification of metal-organic frameworks by a postsynthetic approach[J]. Angewandte Chemie-International Edition, 2008, 47(25): 4699-4702. |
81 | Xu R, Wang Z, Wang M, et al. High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 455-464. |
82 | Morris W, Doonan C J, Furukawa H, et al. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2008, 130(38): 12626-12627. |
83 | Kolb H C, Finn M G, Sharpless K B. Click chemistry: diverse chemical function from a few good reactions[J]. Angewandte Chemie-International Edition, 2001, 40(11): 2004-2021. |
84 | Gadzikwa T, Lu G, Stern C L, et al. Covalent surface modification of a metal-organic framework: selective surface engineering via CuI-catalyzed huisgen cycloaddition[J]. Chemical Communications, 2008, (43): 5493-5495. |
85 | Li B, Gui B, Hu G, et al. Postsynthetic modification of an alkyne-tagged zirconium metal-organic framework via a “click” reaction[J]. Inorganic Chemistry, 2015, 54(11): 5139-5141. |
86 | Zhang Y, Gui B, Chen R, et al. Engineering a zirconium MOF through tandem “click” reactions: a general strategy for quantitative loading of bifunctional groups on the pore surface[J]. Inorganic Chemistry, 2018, 57(4): 2288-2295. |
87 | Chui S S Y, Lo S M F, Charmant J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148-1150. |
88 | Hwang Y K, Hong D Y, Chang J S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angewandte Chemie-International Edition, 2008, 47(22): 4144-4148. |
89 | Banerjee M, Das S, Yoon M, et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials[J]. Journal of the American Chemical Society, 2009, 131(22): 7524-7525. |
90 | Park H J, Cheon Y E, Suh M P. Post-synthetic reversible incorporation of organic linkers into porous metal-organic frameworks through single-crystal-to-single-crystal transformations and modification of gas-sorption properties[J]. Chemistry - A European Journal, 2010, 16(38): 11662-11669. |
91 | Prasad T K, Hong D H, Suh M P. High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups[J]. Chemistry - A European Journal, 2010, 16(47): 14043-14050. |
92 | Tu B, Pang Q, Wu D, et al. Ordered vacancies and their chemistry in metal-organic frameworks[J]. Journal of the American Chemical Society, 2014, 136(41): 14465-14471. |
93 | Wu C D, Hu A, Zhang L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. Journal of the American Chemical Society, 2005, 127(25): 8940-8941. |
94 | Wu C D, Lin W. Heterogeneous asymmetric catalysis with homochiral metal-organic frameworks: network-structure-dependent catalytic activity[J]. Angewandte Chemie-International Edition, 2007, 46(7): 1075-1078. |
95 | Ma L, Falkowski J M, Abney C, et al. A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis[J]. Nature Chemistry, 2010, 2: 838-846. |
96 | Bloch E D, Britt D, Lee C, et al. Metal insertion in a microporous metal-organic framework lined with 2,2’-bipyridine[J]. Journal of the American Chemical Society, 2010, 132(41): 14382-14384. |
97 | Lau C H, Babarao R, Hill M R. A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66[J]. Chemical Communications, 2013, 49(35): 3634-3636. |
98 | Burnett B J, Barron P M, Hu C, et al. Stepwise synthesis of metal-organic frameworks: replacement of structural organic linkers[J]. Journal of the American Chemical Society, 2011, 133(26): 9984-9987. |
99 | Karagiaridi O, Lalonde M B, Bury W, et al. Opening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers[J]. Journal of the American Chemical Society, 2012, 134(45): 18790-18796. |
100 | Karagiaridi O, Bury W, Tylianakis E, et al. Opening metal-organic frameworks(2): Inserting longer pillars into pillared-paddlewheel structures through solvent-assisted linker exchange[J]. Chemistry of Materials, 2013, 25(17): 3499-3503. |
101 | Li T, Kozlowski M T, Doud E A, et al. Stepwise ligand exchange for the preparation of a family of mesoporous MOFs[J]. Journal of the American Chemical Society, 2013, 135(32): 11688-11691. |
102 | Yamada T, Kitagawa H. Protection and deprotection approach for the introduction of functional groups into metal-organic frameworks[J]. Journal of the American Chemical Society, 2009, 131(18): 6312-6313. |
103 | Deshpande R K, Minnaar J L, Telfer S G. Thermolabile groups in metal-organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion, and protection of reactive functional groups[J]. Angewandte Chemie-International Edition, 2010, 49(27): 4598-4602. |
104 | Lun D J, Waterhouse G I N, Telfer S G. A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks[J]. Journal of the American Chemical Society, 2011, 133(15): 5806-5809. |
105 | 依秀春. 功能化羧酸金属有机骨架的构筑、后合成修饰及性质研究[D]. 上海: 华东师范大学, 2014. |
Yi X C. Syntheses, post-synthetic modification and properties of metal-organic frameworks with functionalized carboxylates[D]. Shanghai: East China Normal University, 2014. | |
106 | Farha O K, Mulfort K L, Hupp J T. An example of node-based postassembly elaboration of a hydrogen-sorbing, metal-organic framework material[J]. Inorganic Chemistry, 2008, 47(22): 10223-10225. |
107 | Garibay S J, Cohen S M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology[J]. Chemical Communications, 2010, 46(41): 7700-7702. |
108 | Zheng S T, Bu J T, Li Y, et al. Pore space partition and charge separation in cage-within-cage indium-organic frameworks with high CO2 uptake[J]. Journal of the American Chemical Society, 2010, 132(48): 17062-17064. |
109 | Ma S, Wang X S, Yuan D, et al. A coordinatively linked Yb metal-organic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity[J]. Angewandte Chemie-International Edition, 2008, 47(22): 4130-4133. |
110 | Kim H, Das S, Kim M G, et al. Synthesis of phase-pure interpenetrated MOF-5 and its gas sorption properties[J]. Inorganic Chemistry, 2011, 50(8): 3691-3696. |
111 | Schnobrich J K, Koh K, Sura K N, et al. A framework for predicting surface areas in microporous coordination polymers[J]. Langmuir, 2010, 26(8): 5808-5814. |
112 | Lin X, Telepeni I, Blake A J, et al. High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites[J]. Journal of the American Chemical Society, 2009, 131(6): 2159-2171. |
113 | Park Y K, Choi S B, Kim H, et al. Crystal structure and guest uptake of a mesoporous metal-organic framework containing cages of 3.9 and 4.7 nm in diameter[J]. Angewandte Chemie-International Edition, 2007, 46(43): 8230-8233. |
114 | Reineke T M, Eddaoudi M, Moler D, et al. Large free volume in maximally interpenetrating networks: The role of secondary building units exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO][J]. Journal of the American Chemical Society, 2000, 122(19): 4843-4844. |
115 | Yao Q, Su J, Cheung O, et al. Interpenetrated metal-organic frameworks and their uptake of CO2 at relatively low pressures[J]. Journal of Materials Chemistry, 2012, 22(20): 10345. |
116 | Cui X, Chen K, Xing H, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295): 141-144. |
117 | Yang L, Cui X, Zhang Z, et al. An asymmetric anion-pillared metal-organic frameworks as a multisite adsorbent enables simultaneous removal of propyne and propadiene from propylene[J]. Angewandte Chemie-International Edition, 2018, 57(40): 13145-13149. |
118 | Abbasi A, Soleimani M, Najafi M, et al. New interpenetrated mixed (Co/Ni) metal-organic framework for dye removal under mild conditions[J]. Inorganica Chimica Acta, 2016, 439: 18-23. |
119 | Sezginel K B, Asinger P A, Babaei H, et al. Thermal transport in interpenetrated metal-organic frameworks[J]. Chemistry of Materials, 2018, 30(7): 2281-2286. |
120 | Orefuwa S, Iriowen E, Yang H, et al. Effects of nitro-functionalization on the gas adsorption properties of isoreticular metal-organic framework-eight (IRMOF-8)[J]. Microporous and Mesoporous Materials, 2013, 177: 82-90. |
121 | Souto M, Santiago-Portillo A, Palomino M, et al. A highly stable and hierarchical tetrathiafulvalene-based metal-organic framework with improved performance as a solid catalyst[J]. Chemical Science, 2018, 9(9): 2413-2418. |
122 | Vicent-Morales M, Vitórica-Yrezábal I J, Souto M, et al. Influence of interpenetration on the flexibility of MUV-2[J]. CrystEngComm, 2019, 21(19): 3031-3035. |
123 | Xin Q, Ouyang J, Liu T, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1065-1077. |
124 | Maji T K, Matsuda R, Kitagawa S. A flexible interpenetrating coordination framework with a bimodal porous functionality[J]. Nature Materials, 2007, 6(2): 142-148. |
125 | Zhu R, Ding J, Jin L, et al. Interpenetrated structures appeared in supramolecular cages, MOFs, COFs[J]. Coordination Chemistry Reviews, 2019, 389: 119-140. |
126 | Bae T H, Lee J S, Qiu W, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angewandte Chemie-International Edition, 2010, 49(51): 9863-9866. |
127 | Hossain M I, Udoh A, Grabicka B E, et al. Membrane-coated UiO-66 MOF adsorbents[J]. Industrial & Engineering Chemistry Research, 2019, 58(3): 1352-1362. |
128 | Lee Y R, Cho S M, Ahn W S. Effects of polydimethylsiloxane coating of Ni-MOF-74 on CH4 storage[J]. Korean Journal of Chemical Engineering, 2018, 35(7): 1542-1546. |
129 | Vahed T A, Naimi-Jamal M R, Panahi L. Alginate-coated ZIF-8 metal-organic framework as a green and bioactive platform for controlled drug release[J]. Journal of Drug Delivery Science and Technology, 2019, 49: 570-576. |
130 | Masoomi M Y, Morsali A. Morphological study and potential applications of nano metal-organic coordination polymers[J]. RSC Advances, 2013, 3(42): 19191-19218. |
131 | Dissegna S, Epp K, Heinz W R, et al. Defective metal-organic frameworks[J]. Advanced Materials, 2018, 30(37): 1704501. |
132 | Shearer G C, Chavan S, Bordiga S, et al. Defect engineering: tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis[J]. Chemistry of Materials, 2016, 28(11): 3749-3761. |
133 | Wu H, Chua Y S, Krungleviciute V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. |
134 | Cai G, Jiang H L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability[J]. Angewandte Chemie-International Edition, 2017, 56(2): 563-567. |
135 | Vermoortele F, Bueken B, Le Bars G, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: The unique case of UiO-66(Zr)[J]. Journal of the American Chemical Society, 2013, 135(31): 11465-11468. |
136 | Kozachuk O, Luz I, Llabrés I Xamena F X, et al. Multifunctional, defect-engineered metal-organic frameworks with ruthenium centers: sorption and catalytic properties[J]. Angewandte Chemie-International Edition, 2014, 53(27): 7058-7062. |
137 | 郝向荣. MOF材料的动态框架、模板效应、孔径调节及应用[M]. 长春: 吉林大学出版社, 2013. |
Hao X R. The Dynamic Framework, Template Effect, Pore Size Control and Application in MOF Materials[M]. Changchun: Jilin University Press, 2013. | |
138 | Tanaka D, Kitagawa S. Template effects in porous coordination polymers[J]. Chemistry of Materials, 2008, 20(3): 922-931. |
139 | Qiu L G, Xu T, Li Z Q, et al. Hierarchically micro- and mesoporous metal-organic frameworks with tunable porosity[J]. Angewandte Chemie-International Edition, 2008, 47(49): 9487-9491. |
140 | Choi K M, Jeon H J, Kang J K, et al. Heterogeneity within order in crystals of a porous metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(31): 11920-11923. |
141 | Peng L, Zhang J, Li J, et al. Surfactant-directed assembly of mesoporous metal-organic framework nanoplates in ionic liquids[J]. Chemical Communications, 2012, 48(69): 8688-8690. |
142 | Pham M H, Vuong G T, Fontaine F G, et al. A route to bimodal micro-mesoporous metal-organic frameworks nanocrystals[J]. Crystal Growth & Design, 2012, 12(2): 1008-1013. |
143 | Abedi S, Morsali A. Ordered mesoporous metal-organic frameworks incorporated with amorphous TiO2 as photocatalyst for selective aerobic oxidation in sunlight irradiation[J]. ACS Catalysis, 2014, 4(5): 1398-1403. |
144 | Zhan G, Zeng H C. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters[J]. Chemical Communications, 2017, 53(1): 72-81. |
145 | Zhan G, Zeng H C. An alternative synthetic approach for macro-meso-microporous metal-organic frameworks via a “domain growth” mechanism[J]. Chemical Communications, 2016, 52(54): 8432-8435. |
146 | Sun S, Yang Z. Cu2O-templated strategy for synthesis of definable hollow architectures[J]. Chemical Communications, 2014, 50(56): 7403-7415. |
147 | Lei Y, Yang S, Wu M, et al. Surface patterning using templates: concept, properties and device applications[J]. Chemical Society Reviews, 2011, 40(3): 1247-1258. |
148 | Li L, Zhai T, Zeng H, et al. Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications[J]. Journal of Materials Chemistry, 2011, 21(1): 40-56. |
149 | Shen K, Zhang L, Chen X, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210. |
150 | Guo C, Zhang Y, Guo Y, et al. A general and efficient approach for tuning the crystal morphology of classical MOFs[J]. Chemical Communications, 2018, 54(3): 252-255. |
151 | Schaate A, Roy P, Godt A, et al. Modulated synthesis of Zr-based metal-organic frameworks:from nano to single crystals[J]. Chemistry-A European Journal, 2011, 17(24): 6643-6651. |
152 | Khan N A, Jhung S H. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction[J]. Coordination Chemistry Reviews, 2015, 285: 11-23. |
153 | Jhung S H, Lee J H, Yoon J W, et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability[J]. Advanced Materials, 2007, 19(1): 121-124. |
154 | Tari N E, Tadjarodi A, Tamnanloo J, et al. Facile and fast, one pot microwave synthesis of metal organic framework copper terephthalate and study CO2 and CH4 adsorption on it[J]. Journal of Porous Materials, 2015, 22(5): 1161-1169. |
155 | Chen C, Feng X, Zhu Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture[J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. |
156 | Qiao Z, Zhao S, Sheng M, et al. Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes[J]. Nature Materials, 2019, 18(2): 163-168. |
157 | Qiao Z H, Sheng M L, Wang J X, et al. Metal-induced polymer framework membrane with high performance for CO2 separation[J]. AIChE Journal, 2019, 65(1): 239-249. |
158 | Zhang W, Zheng B, Shi W, et al. Site-selective catalysis of a multifunctional linear molecule: the steric hindrance of metal-organic framework channels[J]. Advanced Materials, 2018, 30(23): 1800643. |
[1] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[2] | 孟金琳, 汪宇, 张群锋, 叶光华, 周兴贵. 介孔材料低温氮气吸脱附的孔道网络模型[J]. 化工学报, 2023, 74(2): 893-903. |
[3] | 李沐紫, 贾国伟, 赵砚珑, 张鑫, 李建荣. 金属有机框架材料对非二氧化碳温室气体捕捉研究进展[J]. 化工学报, 2023, 74(1): 365-379. |
[4] | 郭杰, 张帆, 谢世玉, 由立新, 孙亚光. 氮杂环卡宾-钯功能化的配位聚合物(NHC-Pd@Zn-L):合成、表征及催化Suzuki-Miyaura交叉偶联反应[J]. 化工学报, 2022, 73(8): 3608-3614. |
[5] | 毛恒, 王月, 王森, 刘伟民, 吕静, 陈甫雪, 赵之平. APTES改性ZIF-L/PEBA混合基质膜强化渗透汽化分离苯酚研究[J]. 化工学报, 2022, 73(3): 1389-1402. |
[6] | 王晔, 张婉雨, 汪彬, 耑锐, 任枫, 蔡爱峰, 杨光, 吴静怡. 多孔网幕泡破压力预测模型的建立及实验验证[J]. 化工学报, 2022, 73(3): 1102-1110. |
[7] | 张后虎, 吴晓莉, 陈冲冲, 陈静静, 王景涛. CD-MOF二维层状膜制备及混合溶剂精准分离研究[J]. 化工学报, 2022, 73(10): 4539-4550. |
[8] | 韩笑,陈雨亭,苏宝根,鲍宗必,张治国,杨亦文,任其龙,杨启炜. 己烷异构体吸附分离材料研究进展[J]. 化工学报, 2021, 72(7): 3445-3465. |
[9] | 黄文媛, 孙士杰, 唐宏震, 苏智芳, 钟秦迪, 刘幽燕, 李青云. 聚氨酯泡沫固定化Alcaligenes sp.DN25去除苯酚的研究[J]. 化工学报, 2021, 72(5): 2783-2791. |
[10] | 刘震, 杜华东, 胡旭, 姬忠礼. 高压工况对天然气滤芯性能影响的实验研究[J]. 化工学报, 2021, 72(5): 2669-2679. |
[11] | 张家赫, 原野, 王明, 王志, 王纪孝. 聚合物-金属有机框架材料的研究进展[J]. 化工学报, 2021, 72(2): 709-726. |
[12] | 柳波, 潘宜昌, 周荣飞, 邢卫红. 面向氢气/甲烷分离分子筛膜微结构调控的研究进展[J]. 化工学报, 2021, 72(12): 6073-6085. |
[13] | 唐子龙,肖凡凡,尹玉华,李森雨,汪靖伦. 功能硅烷在有机-无机复合固态电解质中的应用研究进展[J]. 化工学报, 2021, 72(10): 5002-5015. |
[14] | 陈润道, 郑芳, 郭立东, 杨启炜, 张治国, 杨亦文, 任其龙, 鲍宗必. 稀有气体Xe/Kr吸附分离研究进展[J]. 化工学报, 2021, 72(1): 14-26. |
[15] | 贾勐, 张嘉宾, 冯亚青, 张宝. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||