化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4872-4880.DOI: 10.11949/0438-1157.20190299
收稿日期:
2019-04-10
修回日期:
2019-09-18
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
侯锐钢
作者简介:
王涛(1995—),男,硕士,基金资助:
Tao WANG(),Jun WANG,Diyu ZHAO,Yujian LIU,Ruigang HOU()
Received:
2019-04-10
Revised:
2019-09-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Ruigang HOU
摘要:
通过腐蚀条件下玻璃纤维增强塑料老化前后宏观、微观形貌及力学性能的变化对复合材料使用寿命的影响因素进行分析,分析表明,腐蚀条件下玻璃纤维增强塑料使用寿命受温度、时间和腐蚀介质浓度三种因素影响。结合玻璃纤维增强塑料的弯曲强度保留率建立结构为3-10-1的三层BP神经网络模型对复合材料使用寿命进行预测。通过预测数据和实测数据的对比及误差分析,并随机抽取6组检验数据进行检测,结果表明,所建立的BP神经网络模型得到的预测值与实测值具有较好的拟合度。
中图分类号:
王涛, 王俊, 赵迪宇, 刘育建, 侯锐钢. 基于BP神经网络的玻璃纤维增强塑料腐蚀条件下的寿命预测[J]. 化工学报, 2019, 70(12): 4872-4880.
Tao WANG, Jun WANG, Diyu ZHAO, Yujian LIU, Ruigang HOU. Life prediction of glass fiber reinforced plastics based on BP neural network under corrosion condition[J]. CIESC Journal, 2019, 70(12): 4872-4880.
图5 不同酸浓度腐蚀条件下玻璃纤维增强塑料弯曲强度保留率随时间、温度变化曲线
Fig.5 Variation curves of flexural strength retention rate of composites with time and temperature under different acid concentration corrosion conditions
No. | Time/d | Temperature/℃ | Acid concentration | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 2 | 1.0852 | 100.00 | 1.0000 | 8.5200 |
2 | 1 | 25 | 2 | 0.9979 | 98.05 | 0.9701 | 2.8633 |
3 | 3 | 25 | 2 | 1.0185 | 95.76 | 0.9352 | 8.9111 |
4 | 7 | 25 | 2 | 0.8758 | 90.60 | 0.8563 | 2.2706 |
5 | 14 | 25 | 2 | 0.8830 | 89.80 | 0.8441 | 4.6071 |
6 | 21 | 25 | 2 | 0.9103 | 90.31 | 0.8520 | 6.8467 |
7 | 90 | 25 | 2 | 0.8744 | 86.33 | 0.7911 | 10.5340 |
8 | 180 | 25 | 2 | 0.6320 | 85.73 | 0.7820 | -19.1824 |
9 | 360 | 25 | 2 | 0.7403 | 85.30 | 0.7753 | -4.5143 |
10 | 0 | 55 | 2 | 0.9764 | 100.00 | 1.0000 | -2.3610 |
11 | 1 | 55 | 2 | 0.9353 | 97.86 | 0.9673 | -3.3083 |
12 | 3 | 55 | 2 | 0.9257 | 95.32 | 0.9285 | -0.2992 |
13 | 7 | 55 | 2 | 0.8226 | 88.94 | 0.8309 | -1.0029 |
14 | 14 | 55 | 2 | 0.8050 | 85.97 | 0.7856 | 2.4751 |
15 | 21 | 55 | 2 | 0.7986 | 84.28 | 0.7597 | 5.1188 |
16 | 60 | 55 | 2 | 0.6584 | 73.83 | 0.6001 | 9.7206 |
17 | 90 | 55 | 2 | 0.7251 | 71.10 | 0.5584 | 29.8466 |
18 | 180 | 55 | 2 | 0.5093 | 68.44 | 0.5177 | -1.6097 |
19 | 360 | 55 | 2 | 0.3993 | 61.96 | 0.4187 | -4.6440 |
20 | 0 | 80 | 2 | 0.9611 | 100.00 | 1.0000 | -3.8889 |
21 | 1 | 80 | 2 | 0.5951 | 84.41 | 0.7618 | -21.879 |
22 | 3 | 80 | 2 | 0.6647 | 78.24 | 0.6674 | -0.4162 |
23 | 7 | 80 | 2 | 0.5673 | 72.23 | 0.5756 | -1.4477 |
24 | 14 | 80 | 2 | 0.4948 | 68.21 | 0.5142 | -3.7814 |
25 | 21 | 80 | 2 | 0.4491 | 66.49 | 0.4880 | -7.9697 |
26 | 30 | 80 | 2 | 0.5171 | 64.58 | 0.4588 | 12.7147 |
27 | 60 | 80 | 2 | 0.4637 | 59.45 | 0.3804 | 8.5200 |
28 | 90 | 80 | 2 | 0.3371 | 55.53 | 0.3205 | 2.8633 |
29 | 180 | 80 | 2 | 0.2072 | 47.87 | 0.2033 | 8.9111 |
30 | 360 | 80 | 2 | 0.0386 | 40.91 | 0.0970 | 2.2706 |
表1 低浓度酸腐蚀条件下神经网络预测结果与实测值
Table 1 Prediction results and measured values of neural networks under low concentration acid corrosion
No. | Time/d | Temperature/℃ | Acid concentration | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 2 | 1.0852 | 100.00 | 1.0000 | 8.5200 |
2 | 1 | 25 | 2 | 0.9979 | 98.05 | 0.9701 | 2.8633 |
3 | 3 | 25 | 2 | 1.0185 | 95.76 | 0.9352 | 8.9111 |
4 | 7 | 25 | 2 | 0.8758 | 90.60 | 0.8563 | 2.2706 |
5 | 14 | 25 | 2 | 0.8830 | 89.80 | 0.8441 | 4.6071 |
6 | 21 | 25 | 2 | 0.9103 | 90.31 | 0.8520 | 6.8467 |
7 | 90 | 25 | 2 | 0.8744 | 86.33 | 0.7911 | 10.5340 |
8 | 180 | 25 | 2 | 0.6320 | 85.73 | 0.7820 | -19.1824 |
9 | 360 | 25 | 2 | 0.7403 | 85.30 | 0.7753 | -4.5143 |
10 | 0 | 55 | 2 | 0.9764 | 100.00 | 1.0000 | -2.3610 |
11 | 1 | 55 | 2 | 0.9353 | 97.86 | 0.9673 | -3.3083 |
12 | 3 | 55 | 2 | 0.9257 | 95.32 | 0.9285 | -0.2992 |
13 | 7 | 55 | 2 | 0.8226 | 88.94 | 0.8309 | -1.0029 |
14 | 14 | 55 | 2 | 0.8050 | 85.97 | 0.7856 | 2.4751 |
15 | 21 | 55 | 2 | 0.7986 | 84.28 | 0.7597 | 5.1188 |
16 | 60 | 55 | 2 | 0.6584 | 73.83 | 0.6001 | 9.7206 |
17 | 90 | 55 | 2 | 0.7251 | 71.10 | 0.5584 | 29.8466 |
18 | 180 | 55 | 2 | 0.5093 | 68.44 | 0.5177 | -1.6097 |
19 | 360 | 55 | 2 | 0.3993 | 61.96 | 0.4187 | -4.6440 |
20 | 0 | 80 | 2 | 0.9611 | 100.00 | 1.0000 | -3.8889 |
21 | 1 | 80 | 2 | 0.5951 | 84.41 | 0.7618 | -21.879 |
22 | 3 | 80 | 2 | 0.6647 | 78.24 | 0.6674 | -0.4162 |
23 | 7 | 80 | 2 | 0.5673 | 72.23 | 0.5756 | -1.4477 |
24 | 14 | 80 | 2 | 0.4948 | 68.21 | 0.5142 | -3.7814 |
25 | 21 | 80 | 2 | 0.4491 | 66.49 | 0.4880 | -7.9697 |
26 | 30 | 80 | 2 | 0.5171 | 64.58 | 0.4588 | 12.7147 |
27 | 60 | 80 | 2 | 0.4637 | 59.45 | 0.3804 | 8.5200 |
28 | 90 | 80 | 2 | 0.3371 | 55.53 | 0.3205 | 2.8633 |
29 | 180 | 80 | 2 | 0.2072 | 47.87 | 0.2033 | 8.9111 |
30 | 360 | 80 | 2 | 0.0386 | 40.91 | 0.0970 | 2.2706 |
No. | Time/d | Temperature/℃ | Acid concentration/( | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 7 | 1.0952 | 100.00 | 1.0000 | 9.5200 |
2 | 1 | 25 | 7 | 0.9116 | 92.40 | 0.8839 | 3.1428 |
3 | 3 | 25 | 7 | 0.9183 | 89.20 | 0.8350 | 9.9804 |
4 | 7 | 25 | 7 | 0.8498 | 88.90 | 0.8304 | 2.3416 |
5 | 14 | 25 | 7 | 0.8030 | 84.56 | 0.7641 | 5.0897 |
6 | 21 | 25 | 7 | 0.7970 | 82.90 | 0.7387 | 7.8969 |
7 | 30 | 25 | 7 | 0.7632 | 79.05 | 0.6799 | 12.2574 |
8 | 90 | 25 | 7 | 0.6997 | 70.53 | 0.5497 | 27.2883 |
9 | 180 | 25 | 7 | 0.4409 | 65.70 | 0.4759 | -7.3552 |
10 | 360 | 25 | 7 | 0.3636 | 59.90 | 0.3872 | -6.0972 |
11 | 0 | 55 | 7 | 0.9680 | 100.00 | 1.0000 | -3.2000 |
12 | 1 | 55 | 7 | 0.8495 | 90.33 | 0.8523 | -0.3259 |
13 | 3 | 55 | 7 | 0.8342 | 89.70 | 0.8426 | -0.9890 |
14 | 7 | 55 | 7 | 0.6828 | 80.51 | 0.7022 | -2.7690 |
15 | 14 | 55 | 7 | 0.5506 | 73.14 | 0.5895 | -6.5970 |
16 | 21 | 55 | 7 | 0.5210 | 72.47 | 0.5793 | -10.070 |
17 | 60 | 55 | 7 | 0.2904 | 64.47 | 0.4571 | -36.461 |
18 | 90 | 55 | 7 | 0.4428 | 64.08 | 0.4511 | -1.8474 |
19 | 180 | 55 | 7 | 0.3361 | 55.28 | 0.3167 | 6.1404 |
20 | 360 | 55 | 7 | 0.2794 | 50.30 | 0.2405 | 16.1678 |
21 | 0 | 80 | 7 | 1.1667 | 100.00 | 1.0000 | 16.6667 |
22 | 1 | 80 | 7 | 0.7461 | 83.20 | 0.7433 | 0.3737 |
23 | 3 | 80 | 7 | 0.7081 | 80.35 | 0.6997 | 1.1909 |
24 | 7 | 80 | 7 | 0.6623 | 76.63 | 0.6429 | 3.0246 |
25 | 14 | 80 | 7 | 0.4315 | 65.34 | 0.4704 | -8.2681 |
26 | 21 | 80 | 7 | 0.4051 | 64.89 | 0.4635 | -12.586 |
27 | 30 | 80 | 7 | 0.3395 | 62.23 | 0.4228 | -19.708 |
28 | 60 | 80 | 7 | 0.3006 | 55.32 | 0.3172 | -5.2538 |
29 | 180 | 80 | 7 | 0.0759 | 39.78 | 0.0798 | -4.8751 |
30 | 360 | 80 | 7 | -0.0583 | 34.56 | 0 | — |
表2 高浓度酸腐蚀条件下神经网络预测结果与实测值
Table 2 Prediction results and measured values of neural networks under the condition of high concentration acid corrosion
No. | Time/d | Temperature/℃ | Acid concentration/( | Predictive | Actual/% | Normalization | Relative error/% |
---|---|---|---|---|---|---|---|
1 | 0 | 25 | 7 | 1.0952 | 100.00 | 1.0000 | 9.5200 |
2 | 1 | 25 | 7 | 0.9116 | 92.40 | 0.8839 | 3.1428 |
3 | 3 | 25 | 7 | 0.9183 | 89.20 | 0.8350 | 9.9804 |
4 | 7 | 25 | 7 | 0.8498 | 88.90 | 0.8304 | 2.3416 |
5 | 14 | 25 | 7 | 0.8030 | 84.56 | 0.7641 | 5.0897 |
6 | 21 | 25 | 7 | 0.7970 | 82.90 | 0.7387 | 7.8969 |
7 | 30 | 25 | 7 | 0.7632 | 79.05 | 0.6799 | 12.2574 |
8 | 90 | 25 | 7 | 0.6997 | 70.53 | 0.5497 | 27.2883 |
9 | 180 | 25 | 7 | 0.4409 | 65.70 | 0.4759 | -7.3552 |
10 | 360 | 25 | 7 | 0.3636 | 59.90 | 0.3872 | -6.0972 |
11 | 0 | 55 | 7 | 0.9680 | 100.00 | 1.0000 | -3.2000 |
12 | 1 | 55 | 7 | 0.8495 | 90.33 | 0.8523 | -0.3259 |
13 | 3 | 55 | 7 | 0.8342 | 89.70 | 0.8426 | -0.9890 |
14 | 7 | 55 | 7 | 0.6828 | 80.51 | 0.7022 | -2.7690 |
15 | 14 | 55 | 7 | 0.5506 | 73.14 | 0.5895 | -6.5970 |
16 | 21 | 55 | 7 | 0.5210 | 72.47 | 0.5793 | -10.070 |
17 | 60 | 55 | 7 | 0.2904 | 64.47 | 0.4571 | -36.461 |
18 | 90 | 55 | 7 | 0.4428 | 64.08 | 0.4511 | -1.8474 |
19 | 180 | 55 | 7 | 0.3361 | 55.28 | 0.3167 | 6.1404 |
20 | 360 | 55 | 7 | 0.2794 | 50.30 | 0.2405 | 16.1678 |
21 | 0 | 80 | 7 | 1.1667 | 100.00 | 1.0000 | 16.6667 |
22 | 1 | 80 | 7 | 0.7461 | 83.20 | 0.7433 | 0.3737 |
23 | 3 | 80 | 7 | 0.7081 | 80.35 | 0.6997 | 1.1909 |
24 | 7 | 80 | 7 | 0.6623 | 76.63 | 0.6429 | 3.0246 |
25 | 14 | 80 | 7 | 0.4315 | 65.34 | 0.4704 | -8.2681 |
26 | 21 | 80 | 7 | 0.4051 | 64.89 | 0.4635 | -12.586 |
27 | 30 | 80 | 7 | 0.3395 | 62.23 | 0.4228 | -19.708 |
28 | 60 | 80 | 7 | 0.3006 | 55.32 | 0.3172 | -5.2538 |
29 | 180 | 80 | 7 | 0.0759 | 39.78 | 0.0798 | -4.8751 |
30 | 360 | 80 | 7 | -0.0583 | 34.56 | 0 | — |
Test | Time/d | Temperature/℃ | Acid concentration/( | Predictive/% | Actual/% | Relative error/% |
---|---|---|---|---|---|---|
1 | 30 | 25 | 2 | 92.32 | 90.26 | 2.28 |
2 | 30 | 55 | 2 | 75.39 | 80.33 | -6.15 |
3 | 90 | 80 | 2 | 60.32 | 55.53 | 8.63 |
4 | 60 | 25 | 7 | 73.23 | 77.43 | -5.42 |
5 | 30 | 55 | 7 | 70.31 | 70.97 | -0.93 |
6 | 90 | 80 | 7 | 38.36 | 45.54 | -15.77 |
表3 检验数据神经网络预测结果与实测值
Table 3 Prediction results and measured values of neural networks for test data
Test | Time/d | Temperature/℃ | Acid concentration/( | Predictive/% | Actual/% | Relative error/% |
---|---|---|---|---|---|---|
1 | 30 | 25 | 2 | 92.32 | 90.26 | 2.28 |
2 | 30 | 55 | 2 | 75.39 | 80.33 | -6.15 |
3 | 90 | 80 | 2 | 60.32 | 55.53 | 8.63 |
4 | 60 | 25 | 7 | 73.23 | 77.43 | -5.42 |
5 | 30 | 55 | 7 | 70.31 | 70.97 | -0.93 |
6 | 90 | 80 | 7 | 38.36 | 45.54 | -15.77 |
1 | 秦川丽, 张巨生, 唐冬雁, 等 . 聚氨酯/乙烯基酯树脂互穿聚合物网络合成动力学及相容性[J]. 化工学报, 2004, 55(2): 253-258. |
Qin C L , Zhang J S , Tang D Y , et al . Kinetics and compatibility of polyurethane/vinyl ester interpenetrating polymer networks[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(2): 253-258. | |
2 | Sen R , Mullins G . Application of FRP composites for underwater piles repair[J]. Composites Part B Engneering, 2007, 38(5): 751-758. |
3 | Monti M , Natali M , Petrucci R , et al . Carbon nanofibers for strain and impact damage sensing in glass fiber reinforced composites based on an unsaturated polyester resin[J]. Polymer Composites, 2011, 32(5): 766-775. |
4 | Alia C , Jofre-Reche J A , Suárez J C , et al . Characterization of the chemical structure of vinyl ester resin in a climate chamber under different conditions of degradation[J]. Polymer Degradation & Stability, 2018, 153: 88-99. |
5 | Yadav S , Gangwar S , Singh S . Micro/nano reinforced filled metal alloy composites: a review over current development in aerospace and automobile applications[J]. Materials Today Proceedings, 2017, 4(4): 5571-5582. |
6 | 徐国强, 代礼葵, 孙耀宁 . 碱性腐蚀对玻纤增强树脂基复合材料性能的影响[J]. 工程塑料应用, 2018, (11): 94-99. |
Xu G Q , Dai L K , Sun Y N . Effects of alkaline corrosion on properties of glass fiber reinforced resin matrix composites[J]. Engineering Plastics Applications, 2018, (11): 94-99. | |
7 | Malkapuram R , Kumar V , Negi Y S . Recent development in natural fiber reinforced polypropylene composites[J]. Journal of Reinforced Plastics & Composites, 2009, 28(10): 1169-1189. |
8 | Hollaway L C . Handbook of Polymer Composites for Engineers[M]. Elsevier Science, 1994. |
9 | 程基伟, 王天民 . TWINTEX纤维增强塑料的应力腐蚀开裂[J]. 材料研究学报, 2005, (3): 269-276. |
Cheng J W , Wang T M . Stress corrosion cracking of TWINTEX fiber reinforced plastics [J]. Journal of Materials Research, 2005, (3): 269-276. | |
10 | 何伟, 廖功雄, 靳奇峰, 等 . 新型特种工程塑料聚芳醚砜酮和聚芳醚砜热分解动力学及寿命预测[J]. 化工学报, 2006, 57(4): 981-986. |
He W , Liao G X , Jin Q F , et al . Thermal decomposition kinetics and life prediction of poly(aryl ether sulfone ketone) and poly(aryl ether sulfone) new engineering plastics [J].Journal of Chemical Industry and Engineering(China), 2006, 57(4): 981-986. | |
11 | Xu P , Yates S J , Nino J C . Hydrothermal corrosion of magnesia-pyrochlore composites for inert matrix materials[J]. Journal of Composite Materials, 2010, 44(12): 1533-1545. |
12 | Husnayain F , Latif M , Garniwa I . Transformer oil lifetime prediction using the Arrhenius law based on physical and electrical characteristics[C]// 2015 International Conference on Quality in Research (QiR). Lombok, Indonesia, 2016. |
13 | Kuo H C , Wu L J . Prediction of heat-affected zone using grey theory[J]. Journal of Materials Processing Tech., 2002, 120(1): 151-168. |
14 | Guzman V A , Brøndsted P . Effects of moisture on glass fiber-reinforced polymer composites[J]. Journal of Composite Materials. 2015, 49(8): 911-920. |
15 | Yu Y H , Li P , Sui G , et al . Effects of hygrothermal aging on the thermal-mechanical properties of vinylester resin and its pultruded carbon fiber composites[J]. Polymer Composites, 2009, 30(10): 1458-1464. |
16 | 韩露, 马芳武, 陈实现, 等 . 玄武岩纤维增强聚乳酸力学性能及耐老化性能[J]. 化工学报, 2019, 70(3): 1171-1178. |
Han L , Ma F W , Chen S X , et al . Mechanical properties and aging resistance of basalt fiber reinforced polylactic acid [J]. CIESC Journal, 2019, 70(3): 1171-1178. | |
17 | Hsu K L , Gupta H V , Sorooshian S . Artificial neural network modeling of the rainfall-runoff process[J]. Water Resources Research, 1995, 31(10): 2517-2530. |
18 | Park D C , El-Sharkawi M A , Marks R J , et al . Electric load forecasting using an artificial neural network[J]. IEEE Transactions on Power Systems, 2013, 6(2): 442-449. |
19 | Vassilopoulos A P , Georgopoulos E F , Dionysopoulos V . Artificial neural networks in spectrum fatigue life prediction of composite materials[J]. International Journal of Fatigue, 2007, 29(1): 20-29. |
20 | 郑晶晶, 张钦礼, 王新民, 等 . 基于BP神经网络的充填钻孔使用寿命预测[J]. 矿业工程研究, 2008, 30(4): 40-44. |
Zheng J J , Zhang Q L , Wang X M , et al . Life prediction of filling boreholes based on BP neural network [J]. Mining Engineering Research, 2008, 30 (4): 40-44. | |
21 | 胡中永, 邬友英, 李艳华 . GB/T 1449—2005: 纤维增强塑料弯曲性能试验方法[S]. 北京: 中国标准出版社. 2005. |
Hu Z Y , Hu Y Y , Li Y H . GB/T 1449—2005: Test Method for Bending Properties of Fiber Reinforced Plastics [S]. Beijing: China Standard Press, 2005. | |
22 | Zhu M X , Zhang D L . Study on the algorithms of selecting the radial basis function center[J]. Journal of Anhui University, 2000, 24(1): 78. |
23 | 蔡斌, 许龙飞, 郝丽妍 . 基于BP神经网络的受火后RC梁钢筋温度预测[J]. 北方建筑, 2019, 4(4): 23-27. |
Cai B , Xu L F , Hao L Y . Prediction of RC beam rebar temperature after fire based on BP neural network [J]. Northern Architecture, 2019, 4 (4): 23-27. | |
24 | 张斌 . 金属板料单点渐进成形的回弹研究[D].西安: 陕西科技大学, 2019. |
Zhang B . Research on springback of sheet metal single point incremental forming [D]. Xi an: Shaanxi University of Science and Technology, 2019. | |
25 | 于桂杰, 赵崇, 迟建伟, 等 . 基于人工神经网络的连续油管疲劳寿命预测[J]. 中国石油大学学报(自然科学版), 2018, 227(3): 136-141. |
Yu G J , Zhao C , Chi J W , et al . Fatigue life prediction of coiled tubing based on artificial neural network [J]. Journal of China University of Petroleum (Natural Science Edition), 2018, 227(3): 136-141. | |
26 | 李晓骏, 许凤和, 陈新文 . 先进聚合物基玻璃纤维增强塑料的热氧老化研究[J]. 材料工程, 1999, (12): 19-22+30. |
Li X J , Xu F H , Chen X W . Study on thermo-oxygen aging of advanced polymer matrix composites [J]. Material Engineering, 1999, (12): 19-22+30. | |
27 |
Inácio A L N , Nonato R C , Bonse B C . Mechanical and thermal behavior of aged composites of recycled PP/EPDM/talc reinforced with bamboo fiber[J]. Polymer Testing, 2018, DOI: 10.1016/j.polymertesting.2018.10.035
DOI |
28 | 栗晓飞, 张琦, 项民, 等 . 炭纤维增强树脂基玻璃纤维增强塑料模拟加速腐蚀方法的研究[J]. 材料工程, 2016, (2): 5-9. |
Li X F , Zhang Q , Xiang M , et al . Study on the simulated accelerated corrosion method of carbon fiber reinforced resin matrix composites [J]. Material Engineering, 2016, (2): 5-9. | |
29 | Putić S , Stamenović M , Petrović J , et al . Effect of alkaline solutions on the tensile properties of glass-polyester pipes[J]. Materials & Design, 2011, 32(4): 2456-2461. |
30 | 侯锐钢, 尚琪冬, 黎大胜 . 混酸介质加速老化条件下玻璃纤维/溴化环氧乙烯基酯复合材料的耐久性[J]. 复合材料学报, 2017, 34(6): 1212-1220. |
Hou R G , Shang Q D , Li D S . Durability of glass fiber/brominated vinyl epoxy ester composites under accelerated ageing in mixed acid media [J]. Journal of Composite Materials, 2017, 34(6): 1212-1220. |
[1] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[2] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[3] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[4] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[5] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[6] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[9] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[13] | 高学金, 姚玉卓, 韩华云, 齐咏生. 基于注意力动态卷积自编码器的发酵过程故障监测[J]. 化工学报, 2023, 74(6): 2503-2521. |
[14] | 崔张宁, 胡紫璇, 吴雷, 周军, 叶干, 刘田田, 张秋利, 宋永辉. 可降解纤维素基材料的耐水性能研究进展[J]. 化工学报, 2023, 74(6): 2296-2307. |
[15] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||