化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4872-4880.DOI: 10.11949/0438-1157.20190299

• 材料化学工程与纳米技术 • 上一篇    下一篇

基于BP神经网络的玻璃纤维增强塑料腐蚀条件下的寿命预测

王涛(),王俊,赵迪宇,刘育建,侯锐钢()   

  1. 华东理工大学材料科学与工程学院,上海 200237
  • 收稿日期:2019-04-10 修回日期:2019-09-18 出版日期:2019-12-05 发布日期:2019-12-05
  • 通讯作者: 侯锐钢
  • 作者简介:王涛(1995—),男,硕士,1162495591@qq.com
  • 基金资助:
    上海市科学技术委员会科研计划项目(15DZ0504600)

Life prediction of glass fiber reinforced plastics based on BP neural network under corrosion condition

Tao WANG(),Jun WANG,Diyu ZHAO,Yujian LIU,Ruigang HOU()   

  1. School of Materials Science and Engineering, East China University of Technology, Shanghai 200237, China
  • Received:2019-04-10 Revised:2019-09-18 Online:2019-12-05 Published:2019-12-05
  • Contact: Ruigang HOU

摘要:

通过腐蚀条件下玻璃纤维增强塑料老化前后宏观、微观形貌及力学性能的变化对复合材料使用寿命的影响因素进行分析,分析表明,腐蚀条件下玻璃纤维增强塑料使用寿命受温度、时间和腐蚀介质浓度三种因素影响。结合玻璃纤维增强塑料的弯曲强度保留率建立结构为3-10-1的三层BP神经网络模型对复合材料使用寿命进行预测。通过预测数据和实测数据的对比及误差分析,并随机抽取6组检验数据进行检测,结果表明,所建立的BP神经网络模型得到的预测值与实测值具有较好的拟合度。

关键词: 纤维增强塑料, 寿命预测, 神经网络, 腐蚀, 复合材料

Abstract:

The factors affecting the service life of composites were analyzed by the changes of macroscopic, microscopic and mechanical properties before and after aging of glass fiber reinforced plastics under corrosive conditions. The analysis shows that the service life of fiberglass reinforced plastics under corrosion conditions is affected by three factors of temperature, time and corrosion medium concentration. Based on the bending strength retention rate of composites, a three-layer BP neural network model with a structure of 3-10-1 is used to predict the service life of composites. Through the comparison and error analysis of the forecast data and the measured data, and the random extraction of 6 sets of test data for detection, the results show that the predicted value obtained by BP Neural network model has a good fitting fit with the measured value.

Key words: fiber reinforced plastics, life prediction, neural network, corrosion, composites

中图分类号: